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Abstract

In this paper, we apply a fixed point theorem to obtain sufficient conditions
for the existence, multiplicity and nonexistence of positive w-periodic solutions
for a class of higher-order functional difference equations.

1 Introduction

In this paper, we investigate the existence, multiplicity and nonexistence of positive
w-periodic solutions for the periodic equation.

z(n +m) = g(z(n))z(n) — Ab(n) f(z(n — 7(n)), (1)

where A > 0 is a positive parameter and we make the assumptions:

(Hy) b,7 : Z — Z are w-periodic sequences, b(n) > 0, w,m € N,(m,w) = 1, here
(m,w) is the greatest common divisor of m and w.

(Hs2) f,g : [0,400) — [0,400) are continuous. 1 < I < g(u) < L < +oo for
u >0, f(u) >0 for u > 0.

The existence of positive periodic solutions of discrete mathematical models has
been studied extensively in recent years, see [1, 2, 5, 6, 7, 9, 10, 11] and the references
therein. For example, Raffoul [3] considered the existence of positive periodic solutions
for functional difference equations with parameter

z(n+1) = a(n)z(n) + A(n)g(z(n — 7(n))). (2)

Jiang [4] obtained the optimal existence theorem for single and multiple positive peri-
odic solutions to general functional difference equations

Az(n) = —a(n)z(n) + g(n, x(n — 7(n))). (3)

However, relatively few paper has discussed existence of positive periodic solutions for
higher-order functional difference equations. In this paper, we apply a fixed point theo-
rem to discuss the existence, multiple and nonexistence of positive w-periodic solutions
of (1).
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2 Preliminaries

Let X = {z: Z — R,z(n +w) = x(n)}. When endowed with the maximum norm
llz|| = max,, o, |2(n)|, X is a Banach space. From (1), we have that for any = € X,

1 oy )
gyt m) —aln) = ——a o el = 7).

L 1
gz(n))g(z(n+m)) z(n +2m) — ml‘(n +m)
_ Ab(n +m) e
= T my ! Erm ot m),
w—1 1 w2 .
1l Sy e+ om — (1 samrmy =+ = Hm)
w—1 1
- f)\(i[[o m)b(n + (w—1)m)f(z(n + (w—1)m —7(n+ (w— 1)m))).

By summing the above equations and using periodicity of =, we obtain

w—1 Hi._ 1 _
z(n) = Z ]_U?igl(z("ﬂln)) Ab(n +im) f(z(n +im — 7(n +im))). (4)
= 11120 semmy

Define the map T : X — X and a cone P in X by

w—1

Thz(n) = A Z G(n,i)b(n +im) f(x(n +im — 7(n +im))),

=0

P={zxeX:x(n)>d|z|,ne 0w}

respectively, where

and o
§=——n
Lv —1
Clearly, § € (0,1) and
L cGmi< 0<i<w—1
oSG s . 0<i<w-1
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Further, one can easily show that the fixed point of T} in P is the positive periodic
solution of (1). The following well-known result of the fixed point theorem is crucial
in our arguments.

LEMMA 2.1 ([8]). Let E be a Banach space and P be a cone in E. Suppose A;
and Ao are open subsets of E such that 0 € Ay C Ay C Ay and suppose that

Ty: PN (A\Ay) — P
is a completely continuous operator. If one of the following conditions is satisfied,
(i) |Tazx|| < ||z|| for 2 € PN OAy; [|[Thz|| > ||z|| for € PN OAy;
(ii) || Toz|| > ||z|| for z € PN OAy; ||Thz| < ||z|| for x € P N OAs.

Then T has a fixed point in P N (Ax\Ay).

LEMMA 2.2. Assume (H;)-(Hz) hold. Then Th(P) C Pand T\ : P — P is
completely continuous.

PROOF. In view of the definition of P, for x € P, we have

Tan+w) = )\z_: Gn+w,i)bn+w+im)f(z(n+w+im —7(n+w+im)))
=0
= A i G(n,i)b(n +im) f(x(n +im — 7(n +im))) = Tha(n).

i=0

On the other hand,
Thx(n) > Lwl_ 1/\ z_: b(n 4+ im)f(x(n+im — 7(n +1im)))
i=0

= o X i latim = (i)

. Ll_lAZ b (i 7))
and »

Tya(n) < A Y GG — (7).
j=0
Hence,
“ -1
Daa(n) 2 75— ITaz]| = 8[| Thz].

Thus T\(P) C P and according to Arzela-Ascoli’s Theorem, it is easy to show that
Ty : P — P is completely continuous. The proof is complete.
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LEMMA 2.3. Assume (H;)-(Hz) hold and let € > 0. If f(u) > ue for any u > 0,
then for any x € P,
w w—1

“ -1 .
[Taz| = )\EW Z b(j)l=-

=0

PROOF. Since z € P and f(u) > ue, we have

w—1
T\a(n) > Lwl_ A b+ im) fa(n+ im — 7+ )
i=0
w—1
= Lwl, A ; b(n + im)z(n + im — 7(n + im))e

w—1
1 1
o 2

= ]|
=0
lw _1 w—1 .
= mkzb(ﬁllzl\a
j=0
Thus
w—1
“ -1 .
[Tzl > )\Em Z b() |-
j=0

LEMMA 2.4. Assume (Hp)-(Hs) hold . If there exists an 7 > 0 such that f(u) < nu
for any v > 0, then for x € P

w—1
1 .
1Tzl < =20 Y b(3) ]
j=0

This Lemma can be shown in a similar manner as in Lemma 2.3.

3 Main Results
Let Q. = {z € P:|z|]| <r}. Then 0Q, = {x € P: ||z| =r}. Put

fo= tim L 5 — i L (5)

u—0t U u—oo U
Iy = number of zeros in the set{ fo, foo }, loo = number of infinitions in the set{ fo, foo },
m(r) = min{f(x) : x € [dr,r],r > 0}, M(r) = max{f(z) : € [or,r],r > 0}.

At first, we discuss the existence and multiplicity of positive periodic solutions for

(1)
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THEOREM 3.1. Assume (H;)-(Hz) hold. If Iy = 1 or 2, then (1) has at least one
Iy positive w-periodic solution for A > A\, where

LY -1 | r
———— inf .
Z]‘:o b(j) >0 m(r)

PROOF. Choose r; > 0 such that

* =

w—1 .
i oo Zj:o b(5)

< A
r>om(r) m(r1) - Lv-—1

Noting that f(u) > m(ry) for u € 09Q,,, we can easily get

>0 b(G)m(r)
1

I Taal = AZ2=0 22

,x € 0Q,,.
Hence,
|Trz| > ||z||, forxz € 09, and X > A..

If fo = 0, we choose 0 < ry < 71 such that f(z) < na for 0 < z < ro, where n > 0
satisfies

w—1
1
A ' .
D ILORS
7=0
According to Lemma 2.4, we have for x € 05},,,

w—1
1 .
Izl < 55— lknzb(y)l\fﬂll < .
7=0

Then T, has a fixed point in PN (Q,, \ £,,), which is a positive w-periodic solution of
(1) for A > A..
If foo =0, there is a K > 0 such that f(z) < nz for z > K, where n > 0 satisfies

w—1
1 Z .
=0

Let 75 = max{2ry, £}, then z(n) > d||z|| > K for x € 0, and n € [0,w]. Thus
f(z) < nzx for x € 09Q,,. In view of Lemma 2.4, we have

w—1

A > b()lz]| < |||, for z € OQy.,.
j=0

1

T <
[Taz|| < 7

Then T, has a fixed point in PN (2, \2,,), and (1) has at least one positive w-periodic
solution for A > A,.

If fo = foo =0, it is easy to see from the above proof that T has a fixed point x;
in Q,, \ Q, and a fixed point x5 in Q,, \ ,, such that

ro < ||.’E1|| <r < H£E2|| <Trs.
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Consequently, (1) has at least two positive w-periodic solutions for A > A,. The proof
is complete.
Similar to that of the Theorem 3.1, we have
THEOREM 3.2. Assume (H;p)-(Hz) hold. If I, = 1 or 2, then (1) has at least one
I, positive w-periodic solution for 0 < A < E“l” T; SUup,.~q ﬁ
Next, we consider the nonexistence of positive w-periodic solutions for (1).
1

THEOREM 3.3. Assume (H;)-(Hz) hold. If Iy = 0(or I, = 0), then (1) has no
positive w-periodic solutions for sufficiently large A > 0 (or sufficiently small A > 0).

PROOF. Since Iy = 0, we have fy > 0 and f, > 0, there exist £ > 0,2 > 0 and
v > 1 > 0 such that

f(z) > e1z for x € [0,74], f(z) > oz for x € [y,,00).
Let
f(@)

¢1 = min {51,52,min71<$<72{x}} .

Then f(z) > c1x for 2 € [0,00). Assume y is a positive w-periodic solution of (1). We
show that this leads to a contradiction for A > A\, where

(L2 —1)?
(19 = 1)er X570 b(j)

Since Thy = y, it follows from Lemma 2.3 that for A\ > X,

X:

Iyl = 17wl 2 A gz Zb Myl > lyll,

which is a contradiction.
If I.o =0, then fy < oo andfo, < co. There exists 7, > 0,175 > 0,5 > v; > 0 such
that
f(@) <mzforz € [0,m],  fz) <mpz for x € [75,00).

Let ¢3 = max{n;, n,, max{ fgf)

1}, we have
f(z) < cox for z € [0, 00).

Assume y is a positive w-periodic solution of (1). We show that this leads to a contra-

diction for 0 < A < A, where
“ -1

2520 b(j)

Since Th\y = y, it follows from Lemma 2.4 that for 0 < A < A,

A=

w—1

1 .

lyll = ITxyll < Ag—c2 > oyl < lyll,
7=0
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which is a contradiction. The proof is complete.
COROLLARY 3.1. Assume that (H;)-(Hs) hold. If there is a M; > 0 such that

N o wEe1)?
f(z) > Myzx for x € [0, 00), then there exists a A TS SEmaTr such that for all

A > A, (1) has no positive w-periodic solution.
COROLLARY 3.2. Assume that (H;)-(Hz) hold. If there is a My > 0 such that

e _ 1“1
f(z) < Mazx for x € [0,00), then there exists a A = ST such that for all

0 < A < A, (1) has no positive w-periodic solutions.

4 Examples

In this section, we illustrate our main results obtained in the previous sections with
several examples.

EXAMPLE 4.1. Consider the difference equation
z(n+3) = (3 +sinz(n))z(n) — X b(n)z3(n —9), (6)

here b(n) > 0 is a 4-periodic sequences,
In fact 2 < 3 +sin(z(n)) < 4 for n € [0,4]. f(u) = v® and
fo= tim T o g = w1
u—0t U u—oo U
By Theorems 3.1 and 3.2, (6) has at least one positive w-periodic solution for sufficiently
large A > 0 or sufficiently small A > 0.

EXAMPLE 4.2. Consider the difference equation
z(n+1) =3x(n) —sinz(n) — A b(n)x(n — 7(n)), (7)

here b(n) > 0 and 7 : Z — Z are w-periodic sequences.
Clearly, the positive periodic solutions of (7) are the positive periodic solutions of
the following difference equation

z(n+1) = g(z(n))z(n) — A b(n)z(n — 7(n)), (8)
where )
_ 3= ifu>0,
g(“){ 2, if u=0.
Note that
fo= lim Mzl,fooz lim M:1.
u—0t U u—oo U

By Theorem 3.3, (8) has no positive w-periodic solutions for sufficiently large or small
A > 0. Hence, (7) has no positive w-periodic solutions for sufficiently large or small
A>0.
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