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Abstract

The existence of positive solutions for singular boundary value problems in-
volving p-Laplacian operators are investigated. By applying the �xed point the-
orem of cone expansion and compression of norm type, su¢ cient conditions are
established for the existence of positive solutions.

1 Introduction

In this paper, we study the following singular boundary value problem (BVP) involving
p-Laplacian operators8>><>>:

(�p(x
0))0 + a(t)f(xt; yt) = 0; 0 < t < 1;

(�p(y
0))0 + b(t)g(xt; yt) = 0; 0 < t < 1;

x(t) = '(t); 1 � t � 1 + � ; x0(0) = 0;
y(t) = �(t); 1 � t � 1 + � ; y0(0) = 0;

(1)

where xt = x(t + �); � 2 [0; � ]; 0 � � < 1; �p(�) is the p-Laplacian operator; '; � :
[1; 1 + � ]! [0;+1) are continuous, and '(1) = �(1) = 0:
For p-Laplacian equations, many results have been obtained, for example see papers

[1-4]. But most of them are concerned with ordinary di¤erential equations. Recently,
the study of BVP of functional di¤erential equations [5-6] is of signi�cance since they
arise and have applications in variational problems of control theory and in other areas
of applied mathematics. In this paper, by constructing an integral equation which is
equivalent to BVP (1), we study the existence of positive solutions of nonlinear singular
BVP of the form (1).
Let C = C([0; � ]; R) be a Banach space with a norm jj!jjC = sup0���� j!(�)j and

C+ = f! 2 C : !(�) � 0; � 2 [0; � ]g:

We assume the following:
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(H1) f; g : C+ � C+ ! (0;+1) are continuous;
(H2) a; b : (0; 1)! [0;+1) are continuous, and

0 <

Z
E

a(t) �
Z 1

0

a(t)dt < +1; 0 <
Z
E

b(t) �
Z 1

0

b(t)dt < +1;

0 <

Z 1

0

�q(

Z s

0

a(r)dr)ds < +1; 0 <
Z 1

0

�q(

Z s

0

b(r)dr)ds < +1:

In this paper, we may choose a � 2 (0;minf 14 ;
1��
4 g) by (H2) such thatZ 1����

�

a(t)dt > 0 and
Z 1����

�

b(t)dt > 0:

De�ne C� = f! 2 C+ : 0 < �jj!jjC � !(�); � 2 [0; � ]g and E = ft 2 [0; 1] : 0 �
t + � � 1; 0 � � � �g = [0; 1 � � ]: Note that for t 2 [�; 1 � � � �] � E; we have
xt0 = y

t
0 = 0:

DEFINITION 1. A function (x; y) 2 C1[0; 1]� C1[0; 1] is called a positive solution
of BVP (1) if it satis�es the following:
1. (x; y) satis�es BVP(1);
2. x(t) > 0; y(t) > 0; t 2 (0; 1); and
3. (�p(x

0); �p(y
0)) is absolutely continuous on [0; 1]:

Suppose (x(t); y(t)) is a solution of BVP (1). Then8>><>>:
x(t) =

� R 1
t
�q[
R s
0
a(r)f(xr; yr)dr]ds; 0 � t � 1;

'(t); 1 � t � 1 + � ;

y(t) =

� R 1
t
�q[
R s
0
b(r)g(xr; yr)dr]ds; 0 � t � 1;

�(t); 1 � t � 1 + � :

(2)

Suppose that (x0(t); y0(t)) is the solution of BVP (1) with f � 0; g � 0: Then8>><>>:
x0(t) =

�
0; 0 � t � 1;
'(t); 1 � t � 1 + � ;

y0(t) =

�
0; 0 � t � 1;
�(t); 1 � t � 1 + � :

(3)

If (x(t); y(t)) is the solution of BVP (1) and (u(t); v(t)) = (x(t)�x0(t); y(t)�y0(t)),
noting that (u(t); v(t)) = (x(t); y(t)) for 0 � t � 1; we have from (2) that8>><>>:

u(t) =

� R 1
t
�q[
R s
0
a(r)f(ur + xr0; v

r + yr0)dr]ds; 0 � t � 1;
0; 1 � t � 1 + � ;

v(t) =

� R 1
t
�q[
R s
0
b(r)g(ur + xr0; v

r + yr0)dr]ds; 0 � t � 1;
0; 1 � t � 1 + � :

(4)

Let K be a cone in Banach space X = C[0; 1 + � ]� C[0; 1 + � ] de�ned by

K = f(u; v) 2 X : u(t) � 0; v(t) � 0; u(t) + v(t) � g(t)jj(u; v)jj; t 2 [0; 1]g;
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where jj(u; v)jj = jjujj+ jjvjj; jjujj = sup
t2[0;b]

ju(t)j; jjvjj = sup
t2[0;b]

jv(t)j; and

g(t) =

�
1� t; 0 � t � 1;
0; 1 � t � 1 + � :

De�ne

A(u; v)(t) =

� R 1
t
�q[
R s
0
a(r)f(ur + xr0; v

r + yr0)dr]ds; 0 � t � 1;
0; 1 � t � 1 + � ;

B(u; v)(t) =

� R 1
t
�q[
R s
0
b(r)g(ur + xr0; v

r + yr0)dr]ds; 0 � t � 1;
0; 1 � t � 1 + � ;

and
�(u; v)(t) = (A(u; v)(t); B(u; v)(t)); 0 � t � 1 + � : (5)

Under assumptions (H1) and (H2), BVP (1) has a solution if and only if � has a
�xed point (u; v), that is, �(u; v) = (u; v):
The following lemma will play an important role in the proof of our results and can

be found in the book [7].

LEMMA 1. Assume that X is a Banach space and K � X is a cone in X; 
1, 
2
are open subsets of X, and 0 2 
1 � 
2: Furthermore, let � : K

T
(
2 n 
1) ! K be

a completely continuous operator satisfying one of the following conditions:

(i) jj�(x)jj � jjxjj; 8 x 2 K
T
@
1; jj�(x)jj � jjxjj; 8 x 2 K

T
@
2;

(ii) jj�(x)jj � jjxjj; 8 x 2 K
T
@
2; jj�(x)jj � jjxjj; 8 x 2 K

T
@
1:

Then there is a �xed point of � in K
T
(
2 n 
1).

LEMMA 2. The map � : X ! X in (5) is completely continuous and �(K) � K:
The proof of Lemma 2 can be found in [5-6].

2 Main Results

In the sequel, we let

f0 := lim
(jj!1jjC+jj!2jjC)!0

f(!1; !2)

(jj!1jjC + jj!2jjC)p�1
;

f�0 := lim
!1;!22C�;(jj!1jjC+jj!2jjC)!0

f(!1; !2)

(jj!1jjC + jj!2jjC)p�1
;

f1 := lim
(jj!1jjC+jj!2jjC)!1

f(!1; !2)

(jj!1jjC + jj!2jjC)p�1
;

f�1 := lim
!1;!22C�;(jj!1jjC+jj!2jjC)!1

f(!1; !2)

(jj!1jjC + jj!2jjC)p�1
;
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g0 := lim
(jj!1jjC+jj!2jjC)!0

f(!1; !2)

(jj!1jjC + jj!2jjC)p�1
;

g�0 := lim
!1;!22C�;(jj!1jjC+jj!2jjC)!0

f(!1; !2)

(jj!1jjC + jj!2jjC)p�1
;

g1 := lim
(jj!1jjC+jj!2jjC)!1

g(!1; !2)

(jj!1jjC + jj!2jjC)p�1
;

and

g�1 := lim
!1;!22C�;(jj!1jjC+jj!2jjC)!1

g(!1; !2)

(jj!1jjC + jj!2jjC)p�1
:

THEOREM 1. Assume (H1) and (H2) hold. Then BVP (1) has at least one positive
solution if one of the following conditions is satis�ed:
(H3) f0 = 0; f�1 = +1; g0 = 0; '(t) = �(t) � 0; t 2 [1; 1 + � ]; or
(H4) f�0 = +1; f1 = 0; g1 = 0:

PROOF. Suppose that (H3) is satis�ed. By �(t) � 0; '(t) � 0; t 2 [1; 1 + � ]; we
know xt0 = yt0 = 0; t 2 [0; 1 + � ]: Since f0 = 0; for " > 0 (we choose " satisfying
"
R 1
0
�q[
R s
0
a(r)dr]ds � 1

2 ), there is a �1 > 0 such that

f(!1; !2) � ("(jj!1jjC + jj!2jjC))p�1; 0 � jj!1jjC + jj!2jjC � �1:

De�ne

1 = f(u; v) 2 X : jj(u; v)jj < �1g:

For (u; v) 2 @
1 \K; we deduce that jjurjjC + jjvrjjC � �1 for r 2 [0; 1] and thus

jjA(u; v)jj =

Z 1

0

�q[

Z s

0

a(r)f(ur; vr)dr]ds

�
Z 1

0

�q[

Z s

0

a(r)("(jjurjj+ jjvrjj))p�1dr]ds

� "(jjujj+ jjvjj)
Z 1

0

�q[

Z s

0

a(r)dr]ds

� 1

2
(jjujj+ jjvjj):

Similarly, we have B(u; v) � 1
2 (jjujj+ jjvjj): This implies

jj�(u; v)jj = jjA(u; v)jj+ jjB(u; v)jj � jj(u; v)jj; (u; v) 2 @
1 \K:

On the other hand, since f�1 = +1; for M > 0 we can choose M satisfying
M�

R 1����
�

�q[
R s
�
a(r)dr]ds � 1, there exists a �2 > �1 such that

f(!1; !2) � (M(jj!1jjC + jj!2jjC))p�1; !1; !2 2 C�; jj!1jjC + jj!2jjC � �2:

De�ne

2 = f(u; v) 2 X : jj(u; v)jj < �2g:
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For (u; v) 2 @
2 \K; we deduce

�jjurjjC � �jjujj � g(t)jjujj � u(t); t 2 [�; 1� �]; r 2 [0; 1];

�jjvrjjC � �jjvjj � g(t)jjvjj � v(t); t 2 [�; 1� �]; r 2 [0; 1];

which implies that ur; vr 2 C� for r 2 [�; 1� � � �] and

jjurjjC � �jjujj = ��2; jjvrjjC � �jjvjj = ��2; r 2 [�; 1� � � �]:

Thus, for (u; v) 2 @
2 \K; we have

jjA(u; v)jj =

Z 1

0

�q[

Z s

0

a(r)f(ur; vr)dr]ds

�
Z 1����

�

�q[

Z s

�

a(r)(M(jjurjjC + jjvrjjC))p�1dr]ds

� M�(jjujj+ jjvjj)
Z 1����

�

�q[

Z s

�

a(r)dr]ds

� jjujj+ jjvjj
= jj(u; v)jj:

That is,

jj�(u; v)jj � jj(u; v)jj; (u; v) 2 @
2 \K:

According to the �rst part of Lemma 1, it follows that � has a �xed point(u; v) 2
K
T
(
2 n 
1):
Now, suppose that (H4) is satis�ed. Since f�0 = +1; forM > 0 (chooseM satisfying

M�
R 1����
�

�q[
R s
�
a(r)dr]ds � 1), there exists a �1 > 0 such that

f(!1; !2) � (M(jj!1jjC + jj!2jjC))p�1; !1; !2 2 C�jj!1jjC + jj!2jjC � �1:

De�ne


1 = f(u; v) 2 X : jj(u; v)jj < �1g:

For (u; v) 2 @
1 \K; we deduce

�jjurjjC � �jjujj � g(t)jjujj � u(t); t 2 [�; 1� �]; r 2 [0; 1];

�jjvrjjC � �jjvjj � g(t)jjvjj � v(t); t 2 [�; 1� �]; r 2 [0; 1];

which implies that ur; vr 2 C� for r 2 [�; 1� � � �] and

jjurjjC � �jjujj = ��1; jjvrjjC � �jjvjj = ��1; r 2 [�; 1� � � �]: (6)
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For r 2 [�:1� � � �]; we have xr0 = yr0 = 0: Thus, for (u; v) 2 @
2 \K; we have

jjA(u; v)jj =

Z 1

0

�q[

Z s

0

a(r)f(ur; vr)dr]ds

�
Z 1����

�

�q[

Z s

�

a(r)(M(jjurjjC + jjvrjjC))p�1dr]ds

� M�(jjujj+ jjvjj)
Z 1����

�

�q[

Z s

�

a(r)dr]ds

� jjujj+ jjvjj
= jj(u; v)jj;

which implies jj�(u; v)jj � jj(u; v)jj;8(u; v) 2 @
1 \K:
On the other hand, since f1 = 0, for 8 " > 0; 9N > �1 such that

f(!1; !2) � ("(jj!1jjC + jj!2jjC))p�1; jj!1jjC + jj!2jjC > N:

Choose a positive constant �2 such that

�2 > 1+maxffq�1(!1; !2) : 0 � jj!1jjC+jj!2jjC � N+jju0jj+jjv0jjg�q[
Z 1

0

(a(r)+b(r))dr]:

De�ne


2 = f(u; v) 2 X : jj(u; v)jj < �2g:

For (u; v) 2 @
2 \ K; we have from the facts: x0(t) � 0; u(t) � 0; y0(t) � 0; v(t) �
0; t 2 [0; 1 + � ]; that for r 2 [0; 1];

jjur + xr0jjC + jjvr + yr0jjC � jjurjjC + jjvrjjC > N; for jjurjjC + jjvrjjC > N;

and

jjur + xr0jjC + jjvr + yr0jjC � jjurjjC + jjxr0jjC + jjvrjjC + jjyr0jjC
� N + jjx0jj+ jjy0jj;

for jjurjjC + jjvrjjC � N: Let

� := maxffq�1(!1; !2) : 0 � jj!1jjC + jj!2jjC � N + jjx0jj+ jjy0jjg:
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Thus, for " satisfying 0 < "(1 + jjx0jj+ jjy0jj)�q[
R 1
0
a(r)dr] < 1

2 ; we have

jjA(u; v)jj =

Z 1

0

�q[

Z s

0

a(r)f(ur + xr0; v
r + yr0)dr]ds

�
Z 1

0

�q[

Z 1

0

a(r)f(ur + xr0; v
r + yr0)dr]ds

= �q[

Z
jjurjjC+jjvrjjC>N

a(r)f(ur + xr0; v
r + yr0)dr

+

Z
0�jjurjjC+jjvrjjC�N

a(r)f(ur + xr0; v
r + yr0)dr]

� maxf"(jjur + xr0jjC + jjvr + yr0jjC); �g�q[
Z 1

0

a(r)dr]

� maxf"(jju+ x0jj+ jjv + y0jj); �g�q[
Z 1

0

a(r)dr]

� maxf1
2
(jjujj+ jjvjj) + 1

2
; ��q[

Z 1

0

a(r)dr]g

<
1

2
(jjujj+ jjvjj)

=
1

2
�2:

Similarly, we have B(u; v) � 1
2 (jjujj+ jjvjj): This implies

jj�(u; v)jj = jjA(u; v)jj+ jjB(u; v)jj � jj(u; v)jj; (u; v) 2 @
2 \K:

According to the second part of Lemma 1, it follows that � has a �xed point(u; v) 2
K
T
(
2 n 
1):
Suppose that (u(t); v(t)) is the �xed point of � in K

T
(
2 n
1); then (x(t); y(t)) =

(u(t) + x0(t); v(t) + y0(t)) is a positive solution of BVP (1). This completes the proof.

Similarly, we have the next theorem.

THEOREM 2. Assume (H1) and (H2) hold. Then BVP (1) has at least a positive
solution if one of the following conditions is satis�ed:
(H03) f0 = 0; g

�
1 = +1; g0 = 0; '(t) = �(t) � 0; t 2 [1; 1 + � ]; or

(H04) f1 = 0; g1 = 0; g�0 = +1:
In what follows, we shall consider the existence of multiple positive solutions for

BVP (1).

THEOREM 3. Assume (H1); (H2) hold and the following conditions are satis�ed:
(H5) f�0 = +1; f�1 = +1;
(H6) 9 a p1 > 0 such that for 8 0 � jj!1jjC + jj!2jjC � p1 + p0; one has

f(!1; !2) � (l1p1)p�1 and g(!1; !2) � (l1p1)p�1;

where p0 = max
1�t�1+�

f�(t); '(t)g; l1 = f2
R 1
0
�q[
R s
0
a(r)dr]dsg�1:
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Then BVP (1) has at least two positive solutions.

PROOF. By (H5), there exists a �1 : 0 < �1 < p1 such that

f(!1; !2) � (M(jj!1jjC + jj!2jjC))p�1; jj!1jjC + jj!2jjC � �1; !1; !2 2 C�;

where M satis�es M�
R 1
1�� �q[

R 1����
�

a(r)dr]ds � 1: De�ne


1 = f(u; v) 2 X : jj(u; v)jj < �1g:

For (u; v) 2 @
1 \K; similar to (6) one has ur; vr 2 C� and

�1 � jjurjjC + jjvrjjC � �(jjujj+ jjvjj) = ��1; r 2 [�; 1� � � �]:

Hence, we obtain an analogous inequality:

jj�(u; v)jj = jjA(u; v)jj+ jjB(u; v)jj � jj(u; v)jj; (u; v) 2 @
1 \K:

Similarly, there exists a �3 > p1 such that

f(!1; !2) � (M(jj!1jjC + jj!2jjC))p�1; jj!1jjC + jj!2jjC � ��3; !1; !2 2 C�;

M is chosen as above. De�ne


3 = f(u; v) 2 X : jj(u; v)jj < �3g:

For (u; v) 2 @
3 \K; one has ur; vr 2 C� and

jjurjjC + jjvrjjC � �(jjujj+ jjvjj) = ��3; r 2 [�; 1� � � �]:

Furthermore, we have

jj�(u; v)jj = jjA(u; v)jj+ jjB(u; v)jj � jj(u; v)jj; (u; v) 2 @
3 \K:

By (H6), let �2 = p1, de�ne 
2 = f(u; v) 2 X : jj(u; v)jj < �2g: For (u; v) 2 @
2 \K;
one has

jjA(u; v)jj =

Z 1

0

�q[

Z s

0

a(r)f(ur + xr0; v
r + yr0)dr]ds

� l1p1

Z 1

0

�q[

Z s

0

a(r)dr]ds

=
1

2
p1

=
1

2
�2

=
1

2
jj(u; v)jj:

Similarly, we have B(u; v) � 1
2 (jjujj+ jjvjj): This implies

jj�(u; v)jj = jjA(u; v)jj+ jjB(u; v)jj � jj(u; v)jj; (u; v) 2 @
2 \K:
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According to Lemma 1, it follows that � has two �xed points, that is to say, BVP (1)
has at least two positive solutions. This completes the proof.

From above, the following theorems are obvious.

THEOREM 4. Assume (H1) and (H2) hold and the following conditions are satis-
�ed:
(H7) f0 = 0; f1 = 0; g0 = 0; g1 = 0; �(t) = '(t) � 0:
(H8) 9 a p2 > 0 such that for 8 �p2 � jj!1jjC + jj!2jjC � p2; one has

f(!1; !2) � (l2p2)p�1;

where l2 =
nR 1����

0
�q[
R s
0
a(r)dr]dt

o�1
:

Then BVP (1) has at least two positive solutions.

THEOREM 5. Assume (H1) and (H2) hold and the following conditions are satis-
�ed:
(H05) g

�
0 = +1; g�1 = +1;

(H6) 9 a p1 > 0 such that for 8 0 � jj!1jjC + jj!2jjC � p1 + p0; one has

f(!1; !2) � (l1p1)p�1 and g(!1; !2) � (l1p1)p�1;

where p0 = max
1�t�1+�

f�(t); '(t)g and l1 =
n
2
R 1
0
�q[
R s
0
a(r)dr]ds

o�1
:

Then BVP (1) has at least two positive solutions.

THEOREM 6. Assume (H1) and (H2) hold and the following conditions are satis-
�ed:
(H7) f0 = 0; f1 = 0; g0 = 0; g1 = 0; �(t) = '(t) � 0:
(H09) 9 a p2 > 0 such that for 8 �p2 � jj!1jjC + jj!2jjC � p2; one has

g(!1; !2) � (l2p2)p�1;

where l2 =
nR 1����

0
�q[
R s
0
b(r)dr]dt

o�1
:

Then BVP (1) has at least two positive solutions.

3 Examples

We have several examples.

EXAMPLE 1. Consider BVP8>><>>:
(�p(x

0))0
1
4 (t+ 1

3 ) + y
1
3 (t+ 1

3 ) = 0; 0 < t < 1;

(�p(y
0))0

1
3 (t+ 1

3 ) + y
1
4 (t+ 1

3 ) = 0; 0 < t < 1;
x(t) = 0; 1 � t � 1 + 1

3 ; x
0(0) = 0;

y(t) = 0; 1 � t � 1 + 1
3 ; y

0(0) = 0:

(7)

Here, a(t) = b(t) = 1; xt = x(t+�) � x(t+ 1
3 ); y

t = y(t+�) � y(t+ 1
3 ); � =

1
3 ; p =

9
8 ;

and
f(!1; !2) = !

1
4
1 (
1

3
) + !

1
3
2 (
1

3
); g(!1; !2) = !

1
3
1 (
1

3
) + !

1
4
2 (
1

3
):
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As jj!1jjC + jj!2jjC ! 0, we have

f(!1; !1)

(jj!1jjC + jj!2jjC)p�1
=

!
1
4
1 (

1
3 ) + !

1
3
2 (

1
3 )

(jj!1jjC + jj!2jjC)
1
8

� jj!1jj
1
4

C + jj!2jj
1
3

C

(jj!1jjC + jj!2jjC)
1
8

� (jj!1jjC + jj!2jjC)
1
8

! 0

and

g(!1; !1)

(jj!1jjC + jj!2jjC)p�1
=

!
1
3
1 (

1
3 ) + !

1
4
2 (

1
3 )

(jj!1jjC + jj!2jjC)
1
8

� jj!1jj
1
3

C + jj!2jj
1
4

C

(jj!1jjC + jj!2jjC)
1
8

� (jj!1jjC + jj!2jjC)
1
8

! 0;

that is to say f0 = 0 and g0 = 0 hold.
On the other hand, suppose !1; !2 2 C�: Then !1(�) � �jj!1jjC ; !2(�) � �jj!2jjC :

As !1; !2 2 C�; jj!1jjC + jj!2jjC !1; we get

f(!1; !1)

(jj!1jjC + jj!2jjC)p�1
=

!
1
4
1 (

1
3 ) + !

1
3
2 (

1
3 )

(jj!1jjC + jj!2jjC)
1
8

� (�jj!1jjC)
1
4 + (�jj!2jjC)

1
3

(jj!1jjC + jj!2jjC)
1
8

� �
1
3 (jj!1jjC + jj!2jjC)

1
8

! +1;

which means that f�0 = +1 holds. According to Theorem 1, it follows that BVP (7)
has at least one positive solution.
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