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Abstract

In this work we present some analytic and semi-analytic traveling wave so-
lutions of a generalized Burgers� equation for unidirectional �ow of power-law
non-Newtonian �uids. The solutions include the corresponding well-known trav-
eling wave solution of the Burgers�equation for Newtonian �ows. We also derive
estimates of shock thickness for the power-law �ows.

1 Introduction

In this work, we are interested in �nding traveling wave solutions to the following
generalized Burgers�equation for power-law �uid �ows
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where � is the density, � the viscosity, u the velocity of the �uid in x�direction, and
n 6= 1 the power-law index. For n = 1, (1) reduces to the famous Burgers�equation for
Newtonian �ows
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It is well-known that if we impose boundary conditions

lim
�!�1

u(�) = u2; lim
�!+1

u(�)) = u1; lim
j�j!+1

u0(�) = 0;

where u2 > u1, then (2) has the following celebrated traveling wave solution

u(�) =
u1 + u2 exp[� �

2� (u1 � u2)]
1 + exp[� �

2� (u1 � u2)]
(3)

where � = x��t, u1 and u2 are downstream and upstream �uid velocities respectively.
It can be shown that there exists of a thin transition layer of thickness � in the order
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of 2�
u2�u1 for �ows de�ned by (3). This thickness � can be referred to as the shock

thickness, which tends to zero as � ! 0 , and for �xed �, � ! 1 as (u2 � u1) ! 0.
See, for example, [6] or [7] for derivation of (3) and analysis of (2). In this work, we
�nd analytic and semi-analytic solutions to (1) for various values of n, and we derive
the corresponding order of thickness for the transition layers in the power-law Non-
Newtonian �ows. Applications power-law �ows are abundant in studying of �ows in
glacier, blood, food, oil, polymer etc., see e.g. [3]. There are numerous papers denoted
to study equation (2) in the literature for understanding shock formation and traveling
waves in Newtonian �ows dating back to the original papers of Burgers, Hopf, and Cole,
see [6], [8], and [9]. A generalized Burgers�equation for Non-Newtonian �ows based
on the Maxwell model has recently been studied in [7] recently. In this work, we will
show that the corresponding traveling wave solutions to (1) with the same boundary
conditions can be implicitly de�ned by
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and the �rst order approximation of the thickness of the transition layer is
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�
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:

This result extends the classical result from n = 1 to n 6= 1. We have not found any
paper in the literature which deals with the power-law Burges�s equation (1) for n 6= 1.

2 The Generalized Burgers�Equation for Power-Law
Fluid Flows

The general Navier-Stokes equation for incompressible viscous �ows is given by

�
D~u

Dt
= r � ~� �rp+ ~g (4)

where ~u = (u1; u2; u3) is the �uid velocity,
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are the stress and strain tensor, � the density, p the scaler pressure, and ~g the external
force, � = 1
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); 1 � i; j � 3: For unidirectional �ows, we assume that ~u =

(u1; 0; 0); � ij = 0 for i 6= 1 or j 6= 1; ~g = (g1; 0; 0); and rp = ( @p@x1 ; 0; 0): The Navier-
Stokes equation (4), in this case, takes the following simple form

�
Du1
Dt

=
@�11
@x1

� @p

@x1
+ g1 (5)



134 Traveling Wave Solutions of Burgers�Equation

where Du1
Dt =

@u1
@t + u1

@u1
@x1
:

Rheological relationships between � and D~u are frequently used to determine the
type of �uids. It is well-known that for power-law �uids, the rheological relation is
given by

� ij = 2Kj2�kl�klj(n�1)=2�ij ; 1 � i; j � 3 (6)

where n is called the power-law index, see e.g., [1] or [9]. If n = 1 , then the �uid is
said to be a Newtonian �uid, and it is non-Newtonian if n 6= 1. For many important
industrial polymer �uids, the value of n is between 0 and 1. Table1 provides values of
K and n for some important industrial power-law �uids:

Polymer Temperature (Kelvin) K(Pasn ) n
Nylon 493 2:62� 103 0:63
Polystyrene 463 4:47� 103 0.22
Polyethylene 453 4:47� 103 0.56

Table 1: Values of K and n

For the unidirectional power-law �ows, (6) reduces to �11 = 2nKj�11j(n�1)�11. Let
u1; x1; g1; and 2nK be denoted by u; x; g and � respectively. Then from (5), we have
the equation for the unidirectional power-law �ows
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where �(t) = jtjn�1t; 0 < n <1: In (7), let � = �
� , and let �

@p
@x + g = 0, we then have

the generalized Burgers�equation for power-law �uids

@u

@t
+ u

@u

@x
= �

@

@x
�(
@u

@x
) (8)

We are interested in �nding solutions of (8) for n 6= 1.

3 Traveling Wave Solutions

Let u(x; t) = u(�) , with � = x � �t . Then @u
@t = ��

@u
@� ,
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in which A is the integration constant. Applying the downstream and upstream bound-
ary conditions: lim�!+1 u(�) = u1; lim�!�1 u(�) = u2; limj�j!+1 u

0(�) = 0 we get
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Without loss of generality, in the following, we assume that u2 > u > u1. For n = 1,
(10) gives
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which gives the celebrated traveling wave solution
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i
to the Burgers�equation for Newtonian �ows. In the following, we are interested in
�nding solutions to (10) for n 6= 1. By using Mathematica, we �nd that
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where 2F1 is the well-known Gauss hypogeometric function de�ned by the series

2F1(a; b; c;x) =
1X
k=0

(a; k)(b:k)

(c; k)
xk; jxj < 1

where (a; k) = a(a+ 1):::(a+ k � 1) is the Appel symbol, see e.g. [2]. Therefore, from
(11), we have the following power series solution to the generalized power-law Burgers�
equation
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where n 6= 1; j u2�uu2�u1 j < 1:
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It is interesting to note that for some special values of n, the integral (10) can be
expressed in terms of elementary functions. In particular, for n = 1

2 , we have
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for n = 2, u2 > u > u1, by using the identity z2F1(1=2; 1=2=; 3=2; z2) = a arcsin z and
(11), we also get�
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respectively. Therefore, we have the following three traveling wave solutions for the
three special values of n:
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More analytic solutions in terms of elementary functions for special values of n can
be derived and they are not listed here due to limited spaces. We have omitted the
integration constants in the above solutions. For simplicity, let u1 = �1; u2 = 1;
pro�les of the transition layers for three special cases are given in Figure 1, with u
versus ( 12� )

1=n�: These three cases represent Newtonian (n = 1), Non-Newtonian shear-
thinning (n < 1), and Non-Newtonian shear-thickening �uid �ows (n > 1) respectively.
In Figure 1, solid thick line represents the Newtonian �uids, the solid thin line

represents the shear thickening �uids, and the dash line represents the shear thinning
�uids.
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Figure 1: Transition layers

4 The Order of Thickness of the Transition Layers

The transition layer thickness or the shock thickness can be estimated by using the
�rst order derivativedud� (0). From
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Let � denote the thickness of the transition layer. Using the Taylor expansion, we have
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Therefore, we have

� = (u2 � u1)
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which is the �rst order approximation of the thickness of the transition layer for the
power-law �ows. This estimate, for n = 1, gives the well-known estimate for the
thickness of the transition layer of the Newtonian �ows.

5 Conclusions

In this work, we have derived a generalized Burgers�equation for the power-law �ows,
and we also derive a new general traveling wave solution of this equation in terms of
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the Gauss hypergeometric function. As special cases of this general solution, we show
several analytic solutions in terms of elementary functions as well as the pro�les of
the transition layers of the solutions. We de�ned a �rst order approximation of the
thickness of the transition layer or thickness of the shock for the generalized Burgers�
equation. The results generalize the known solution and shock-layer estimate for the
Newtonian �ows.
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