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Abstract
In this paper we establish oscillation criteria for second order delay di¤erential

equations with mixed nonlinearlities: The results obtained here generalize some
of the existing results.

1 Introduction

Consider a second order delay di¤erential equation of the form

(r(t)jx0��1x0(t))0 + q(t)jx(�0(t))j��1x(�0(t)) +
nX
j=1

qj(t)jx(� j(t))j�j�1x(� j(t)) = 0 (1)

where �1 > ::: > �m > � > �m+1 > � � ��n > 0; n > m � 1; are constants, r(t) 2
C1[t0;1); r(t) > 0; q(t) and qj(t) 2 C[t0;1); j = 1; 2; :::; n; are nonnegative. Here we
assume that there exists �(t) 2 C1[t0;1) such that �(t) � � j(t); �(t) � t; lim

t�!1
�(t) =

1 and �
0
(t) � 0 for t 2 [t0;1); j = 0; 1; 2; :::; n:

By a solution of equation (1), we mean a function x 2 C1[Tx;1); Tx � t0; which has
the property r(t)jx0��1x01[Tx;1) and satis�es the equation for all t � Tx: We restrict
our attention to those solutions x(t) of equation (1) which satisfy supfjx(t)j : t > Tg >
0 for all T � Tx: Such a solution is said to be oscillatory if it has a sequence of zeros
tending to in�nity and nonoscillatory otherwise.
Particular cases of equation (1) has been considered in [1, 2, 4, 5] and they estab-

lished conditions for the oscillation of all solutions under the assumption

lim
t�!1

R(t) =1; where R(t) =
tZ

t0

1

r
1
� (s)

ds: (2)

In this paper, we shall further investigate and extend the main results in [4] and
[5] to the general equation (1) with mixed nonlinearities and several delays since such
type of equation arise in the growth of bacteria population with competitive species.
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2 Main Results

We �rst present a lemma which is a generalization of Lemma 1 of Sun and Wong [6].

LEMMA 1. Let f�ig; i = 1; 2; :::; n; be the n-tuple satisfying �1 > � � � > �m > � >
�m+1 > � � ��n > 0: Then there is an n-tuple (�1; �2; :::; �n) satisfying

nX
i=1

�i�i = �;

and
nX
i=1

�i = 1; 0 < �i < 1:

LEMMA 2. Suppose X and Y are nonnegative. Then

X
 � 
XY 
�1 + (
 � 1)Y 
 � 0; 
 > 1

where equality holds if and only if X = Y .

The proof of the lemma can be found in [3].

THEOREM 1. Assume that (2) holds andZ 1 �
R�(�(t))Q(t)� ( �

�+ 1
)�+1

�
0
(t)

R(�(t))r
1
� (�(t))

�
dt =1 (3)

where

Q(t) = q(t) + k
nY
i=1

q
�i
i (t); k =

nY
i=1

�
��i
i

and �1; �2; :::; �n are positive constants as in Lemma 1. Then every solution of equation
(1) is oscillatory.

PROOF . Suppose that x(t) is a nonoscillatory solution of equation (1). Without
loss of generality we may assume that x(t) > 0 for all large t since the case x(t) < 0
can be considered by the same method. From equation (1) and condition (2) we can
easily obtain that there exists a t1 > t0 such that x(t) > 0; x

0
(t) > 0; (r(t)(x

0
(t))�)

0 �
0; t � t1: Therefore, we have that

r(t)(x
0
(t))� � (r(�(t))(x

0
(�(t)))�

for t � t1 which implies that

x
0
(�(t))

x0(t)
�
� r(t)

r(�(t))

� 1
�

for t � t1: (4)

De�ne

W (t) = R�(�(t))
r(t)x

0
(t)�

x(�(t))�
for t � t1: (5)
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Then W (t) > 0: From equations (1) and (5) and noting that x0(t) > 0 and hence
x(� j(t)) � x(�(t)) for j = 0; 1; 2; :::; n; we have

W
0
(t) � ��

0
(t)R��1(�(t))

r
1
� (�(t))

r(t)(x
0
(t))�

(x(�(t)))�
�R�(�(t))q(t)

��R�(�(t))r(t)(x
0
(t))�

x�+1(�(t))
x
0
(�(t))�

0
(t)�R�(�(t))

nX
j=1

qj(t)x
�j��(�(t)):(6)

Recall the arithmetic-geometric inequality

nX
i=1

�iui �
nY
i=1

u
�i
i ; ui � 0 (7)

where �1; :::; �n are chosen according to given �; �1:::; �n as in Lemma 1. Now return
to (6) and identify ui = �

�1
i qi(t)x

�i��(�(t)) in (7) to obtain

W
0
(t) � �R�(�(t))Q(t) + ��

0
(t)

R(�(t))r
1
� (�(t))

W (t)

� ��
0
(t)

R(�(t))r
1
� (�(t))

R�+1(�(t))r
�+1
� (t)(x

0
(t))�+1

(x(�(t)))�+1

= �R�(�(t))Q(t) + ��
0
(t)

R(�(t))r
1
� (�(t))

[W (t)�W
�+1
� (t)] (8)

where Q(t) is the same as in Theorem 1. Set X = W (t) and Y = �
1

1�� where � =
�+1
� > 1: Applying Lemma 2 in (8) we obtain

W
0
(t) �

� �

�+ 1

��+1 �
0
(t)

R(�(t))r
1
� (�(t))

�R�(�(t))Q(t):

Integrating the last inequality from t1 to t; we have

0 < W (t) �W (t1)�
tZ

t1

(R�(�(s))Q(s)�
� �

�+ 1

��+1 �
0
(s)

R(�(s))r
1
� (�(s))

)ds: (9)

Letting t!1 in (9), we obtain a contradiction with (3). This completes the proof.

Based on Theorem 1 and the proofs of Corollary 2.1 and the Corollary 2.2 in [2, 5],
we can easily obtain the following results.

COROLLARY 2. Assume that (2) holds and for t1 > t0

lim
t!1

inf
1

logR(�(t))

tZ
t1

R�(�(s))Q(s)ds >
� �

�+ 1

��+1
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where Q(t) is the same as in Theorem 1. Then every solution of equation (1) is
oscillatory.

COROLLARY 3. Assume that (2) holds, �
0
(t) > 0 and

lim
t!1

inf
R�+1(�(t))r

1
� (�(t))

� 0(t)
Q(t) >

� �

�+ 1

��+1
where Q(t) is the same as in Theorem 1. Then every solution of equation (1) is
oscillatory.

The following examples show the importance of our main results.

EXAMPLE 1. Consider the equation

((x
0
(t))

3
5 )

0
+
a

t
8
5

x
3
5 (�1t) +

b

t4
x
5
3 (�2t) +

c

t
x
1
3 (�3t) = 0; t � 1 (10)

where 0 < �i < 1 for i = 1; 2; 3 and a; b; c > 0 are constants. Set �(t) = �t with
� = minf�1; �2; �3g: Also � = 3=5; �1 = 5=3; �2 = 1=3: By direct computation, we
have by choosing �1 =

1
5 ; �2 =

4
5 , that

Q(t) =

�
a+ 5( 14 )

4=5 5
p
bc4
�

t8=5
:

By Corollary 2 or Corollary 3 we have that all solutions of equation (10) are oscillatory
if

�3=5
�
a+ 5(

1

4
)4=5

5
p
bc4
�
>
�3
8

�8=5
:

EXAMPLE 2. Consider the equation

x
00
(t) +

a

t2
x(�1t) +

b

t3
x
7
3 (�2t) +

c

t2
x
5
3 (�3t) +

d

t
12
7

x
1
3 (�4t) = 0; t � 1 (11)

where 0 < �i < 1 for i = 1; 2; 3; 4 and a; b; c; d > 0 are constants. Set �(t) = �t
with � = minf�1; �2; �3; �4g: Also � = 1; �1 = 7=3; �2 = 5=3; �3 = 1=3: By direct
computation, we have by choosing �1 = 1=6; �2 = 1=4; �3 = 7=12; that

Q(t) =

�
a+ kb

1
6 c

1
4 d

7
12

�
t2

; k =
2
11
6 3

3
4

7
7
12

:

By Corollary 2 or Corollary 3 we have that all solutions of equation (11) are oscillatory
if

�
�
a+ kb

1
6 c

1
4 d

7
12

�
>
1

4
:
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3 Remark

The main results of this paper can be easily extended to the following neutral di¤erential
equation.

(r(t)jz0��1z0(t))0��1x(�(t)) +
nX
j=1

qj(t)jx0(� j(t))j�j�1x(� j(t)) = 0

where z(t) = x(t)+p(t)x(t��) with 0 � p(t) < 1and � � 0 and the details are skipped.
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