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Abstract

In a given graph G = (V;E) a set S of vertices with an assignment of colors
to them is called a de�ning set for vertex colorings of G if there exists a unique
extension of S to a c � �(G) coloring of the vertices of G. A de�ning set with
minimum cardinality is called a minimum de�ning set, and its cardinality is the
de�ning number. In this paper, we study the de�ning number for vertex colorings
of graphs arising from applying Mycielski�s construction to Ladder graphs.

1 Introduction

A c-coloring of a graph G is an assignment of c di¤erent colors to the vertices of G
such that adjacent vertices receive di¤erent colors. The (vertex) chromatic number of a
graph G, denoted by �(G); is the minimum number c for which there exists a c-coloring
of G. A graph G with �(G) = c is called a c-chromatic graph, (see [7]).
For a graph G and a number c � �(G), a subset of vertices S with an assignment

of colors to them is called a de�ning set for vertex colorings if there exists a unique
extension of the colors of S to a c-coloring of the vertices of G. A de�ning set with
minimum cardinality is called a minimum de�ning set and its cardinality is the de�ning
number, denoted by d(G; c).
The concept of de�ning sets has been studied to some extent, for block designs

and under another name, critical sets for Latin squares, and forcing sets for perfect
matchings in graphs, also in dominating sets, geodetic sets, and hull sets in graphs,
(see [1�6]).
The concept of de�ning set for vertex colorings is closely related to the concept of

list coloring. In a list coloring for each vertex v there is a given list of colors L(v)
available on that vertex. Any de�ning set S in a graph G naturally induces a list of
possible colors for the vertices of the induced subgraph hG� Si. Furthermore, using
this list of colors, hG� Si is uniquely list colorable, (see [1,3]).
A graph G with n vertices is called a uniquely 2-list colorable graph if there exists a

list L(v) of at least two colors for each v 2 V (G) such that G has a unique list coloring
with respect to these lists.
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Mahdian et al. in [3] obtained the following characterization.

Theorem A ([3]). A connected graph is uniquely 2-list colorable if and only if at
least one of its blocks is not a cycle, a complete graph or a complete bipartite graph.

For a simple graph G, by graph M(G) we mean the graph arising from applying
Mycielski�s construction to G. Mycielski�s construction produces a simple graphM(G)
containing G as follows. If V (G) = fv1; v2; : : : ; vng, then V (M(G)) = fv1; v2; : : : ; vng[
fu1; u2; : : : ; un; wg, where V (G) \ fu1; u2; : : : ; un; wg = ; and

E(M(G)) = E(G) [ fuiv j v 2 NG(vi); 1 � i � ng [ fuiw j 1 � i � ng:

Theorem B ([7]). If G is a c-chromatic triangle-free graph, then M(G) is a (c+ 1)-
chromatic triangle-free graph.

The cartesian product of two graphs G and H written G � H, is the graph with
vertex set V (G) � V (H) speci�ed by putting (u; v) adjacent to (u0; v0) if and only if
either (1) u = u0 and vv0 2 E(H), or (2) v = v0 and uu0 2 E(G).

Mojdeh et al. in [6] obtained the de�ning number for vertex colorings in graphs
obtained from paths, cycles, complete graphs and complete bipartite graphs applying
Mycielski�s construction. For n � 2, we refer K2 � Pn as the Ladder graph of order
2n. Here we investigate the de�ning number for vertex colorings of the graph G arising
from applying Mycielski�s construction to the Ladder graph K2 � Pn for any integer
n � 2. In this paper for a vertex v, c(v) denotes the color of v.

2 Main Results

It follows from Theorem B that for any positive integer n; �(M(K2�Pn)) = 3: In this
section, we present our main results. We investigate d(M(K2�Pn); 3) for any positive
integer n. For this purpose we denote the vertex set of the Ladder graph G = K2�Pn
by

V = V (G) = fa01; a02; :::; a0n; a11; a12; :::; a1ng;

where aij is adjacent to ai(j�1); ai(j+1); a(i+1)j for all 1 � j � n, and i+1 is calculated
in modulo 2. Then V (M(G)) = V [ U [ fwg, where

U = fb01; b02; :::; b0n; b11; b12; :::; b1ng;

and NM(G)(bij) = NG(aij) [ fwg for all i 2 f0; 1g and 1 � j � n: Figure 1 shows the
graph M(K2 � P3) in which all of non-�lled circles refer to the vertex w.
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Figure 1. M(K2 � P3):

It follows from Theorem A that any de�ning set for vertex coloring of M(K2�Pn)
intersects both fa01; a11; b01; b11g and fa0n; a1n; b0n; b1ng. So we have the following
lemma.

LEMMA 1. If S is a minimum de�ning set for vertex coloring of M(K2 � Pn) for
some positive integer n, then S \fa01; a11; b01; b11g 6= ; and S \fa0n; a1n; b0n; b1ng6= ;:
We next obtain the exact value of the de�ning number for 2 � n � 6.

THEOREM 2. d(M(K2 � Pn); �) =
�
3 2 � n � 5
4 n = 6

:

PROOF. It follows from Lemma 1 that d(M(K2 � Pn); �) � 2, for n = 2; 3; 4; 5; 6.
If S is a set of two vertices with colors in M(K2 � Pn) such that

jS \ fa01; a11; b01; b11gj = jS \ fa0n; a1n; b0n; b1ngj = 1;

then by a case-checking we can examine all possibilities for S and notice that S is
not a de�ning set for a 3-coloring of M(K2 � Pn). In each possibility for the vertices
of S we notice that either there was no extension of S to a 3-coloring of M(G), or
there were two di¤erent colorings containing S. So, d(M(K2 � Pn); �) � 3 for n =
2; 3; 4; 5; 6: Furthermore, no three vertices with colors uniquely determine a 3-coloring
of M(K2 � P6). So d(M(K2 � P6); �) � 4: Now we de�ne the de�ning set Sn for
2 � n � 6 as follows.
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� For n = 2 we de�ne S2 = fw; a01; a12g, where c(w) = 1; c(a01) = 2 and c(a12) = 1.

� For n = 3 we de�ne S3 = fb01; b03; a13g, where c(b01) = 2; c(b03) = 3 and
c(a13) = 2.

� For n = 4 we de�ne S4 = fb01; b03; a14g, where c(b01) = 2; c(b03) = 3 and
c(a14) = 1.

� For n = 5 we de�ne S5 = fb05; b11; a13g, where c(b05) = 2; c(b11) = 3 and
c(a13) = 2.

� For n = 6 we de�ne S6 = fb05; b11; a13; b16g, where c(b05) = 2; c(b11) = 3;
c(a13) = 2 and c(b16) = 3:

Then Sn is a de�ning set for a 3-coloring of M(K2 � Pn) for each n = 2; 3; 4; 5; 6.
The proof is complete.

We proceed with the following lemma. For a set of vertices X = fv1; v2; :::; vkg and
a coloring c we denote c(X) = fc(v1); c(v2); :::; c(vk)g: Also if X 0 = fv01; v02; :::; v0kg, then
c(X) = c(X 0) if and only if c(vi) = c(v0i) for all i = 1; 2; :::; k:

LEMMA 3. If S is a minimum de�ning set for coloring of M(K2 � Pn) for n � 6,
then S \ fa0(i+j); a1(i+j); b0(i+j); b1(i+j) : 0 � j � 3g 6= ; for each i = 1; 2; :::; n� 3.
PROOF. Let n � 6 and let S be a minimum de�ning set for a 3-coloring ofM(K2�

Pn). Assume to the contrary that S \ fa0(i+j); a1(i+j); b0(i+j); b1(i+j) : 0 � j � 3g = ;
for some integer i 2 f1; 2; :::; n � 3g. Without loss of generality we may assume that
c(w) = 1 in this 3-coloring. We checked all of the di¤erent colors for the vertices of

X = fa0(i�1); b0(i�1); a1(i�1); b1(i�1); a0(i+4); b0(i+4); a1(i+4); b1(i+4)g

and noticed that in each case either there was no extension of S to a 3-coloring of
M(K2 � Pn) or there were at least two di¤erent 3-colorings containing S. We leave
giving all cases and only present two samples. The other cases are similarly veri�ed.

� If the coloring of X was given by c(a0(i�1)) = 1, c(b0(i�1)) = 2, c(a1(i�1)) = 3,
c(b1(i�1)) = 2, c(a0(i+4)) = 1, c(b0(i+4)) = 3, c(a1(i+4)) = 2, c(b1(i+4)) = 3, then
there were two colorings for the vertices of A = fa0(i+j); a1(i+j); b0(i+j); b1(i+j) :
0 � j � 3g as follows:

(1) c(a0i) = 3, c(b0i) = 2, c(a0(i+1)) = 1, c(b0(i+1)) = 2, c(a0(i+2)) = 3,
c(b0(i+2)) = 3, c(a0(i+3)) = 2, c(b0(i+3)) = 2, c(a1i) = 1, c(b1i) = 2, c(a1(i+1)) = 3,
c(b1(i+1)) = 3, c(a1(i+2)) = 2, c(b1(i+2)) = 2, c(a1(i+3)) = 1, c(b1(i+3)) = 3, and

(2) c(a0i) = 3, c(b0i) = 3, c(a0(i+1)) = 1, c(b0(i+1)) = 2, c(a0(i+2)) = 3,
c(b0(i+2)) = 3, c(a0(i+3)) = 2, c(b0(i+3)) = 2, c(a1i) = 1, c(b1i) = 2, c(a1(i+1)) = 3,
c(b1(i+1)) = 3, c(a1(i+2)) = 2, c(b1(i+2)) = 2, c(a1(i+3)) = 1, c(b1(i+3)) = 3.

� If the coloring of X was given by c(a0(i�1)) = 1, c(b0(i�1)) = 2, c(a1(i�1)) = 3,
c(b1(i�1)) = 2, c(a0(i+4)) = 1, c(b0(i+4)) = 3, c(a1(i+4)) = 2, c(b1(i+4)) = 3, then
b1(i+3) was a non-colorable vertex.
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This contradiction completes the proof.

In the following we determine the exact value for d(M(K2 � Pn); �) when n �
2 or 3 (mod 4):

THEOREM 4. For each n � 6 with n � 2 or 3 (mod 4), d(M(K2 � Pn); �) =
2 +

�
n�2
4

�
:

PROOF. Let n � 6 and n � 2 or 3 (mod 4). It follows from Lemmas 1 and 3 that
d(M(K2�Pn); �) � 2+

�
n�2
4

�
: Now it is su¢ cient to de�ne a de�ning set of required

cardinality.

� For n � 2 ( mod 8) we de�ne S = fa11; b0(8i+3); b1(8j�1); a0n : i � 0; j � 1g,
where c(a11) = 2; c(b0(8k+3)) = 2; c(b1(8k�1)) = 3 and c(a0n) = 1:

� For n � 0; 1 ( mod 8) we de�ne S = fa11; b0(8i+3); b1(8j�1); a1n : i � 0; j � 1g,
where c(a11) = 2; c(b0(8k+3)) = 2; c(b1(8k�1)) = 3 and c(a1n) = 1:

Then S is a de�ning set of cardinality 2 +
�
n�2
4

�
: Hence d(M(K2 � Pn); �) �

2 +
�
n�2
4

�
: Hence the the proof is complete.

Henceforth we let n � 8 and n � 0 or 1 (mod 4):
THEOREM 5. For n 2 f8; 9g, d(M(K2 � Pn); �) = 4:
PROOF. It follows from Lemmas 1 and 3 that d(M(K2�Pn); �) � 3 for n 2 f8; 9g.

Also it follows from Lemma 1 that for any de�ning set S,

S \ fa01; a11; b01; b11g 6= ;; S \ fa0n; a1n; b0n; b1ng 6= ;:

If S is a de�ning set for M(K2 � P8) and jSj = 3, then

jS \ fa04; a14; b04; b14; a05; a15; b05; b15gj = 1:

But we examined all possibilities for S and noticed that either there were two colorings
containing S, or there was a non-colorable vertex in M(K2 � P8). This implies that
d(M(K2�P8); �) � 4: Similarly d(M(K2�P9); �) � 4. On the other hand we consider
the following de�ning sets.

� For n = 8 we de�ne S = fa11; b03; b17; b08g, where c(a11) = 2; c(b03) = 2; c(b17) =
3 and c(b08) = 3:

� For n = 9 we de�ne S0 = fa11; b03; b17; a09g, where c(a11) = 2; c(b03) = 2;
c(b17) = 3 and c(a09) = 3:

Then S is a de�ning set for a 3-coloring of M(K2 � P8) and S0 is a de�ning set for
a 3-coloring of M(K2 � P9). Hence, the the proof is complete.
LEMMA 6. Let n � 12 and n � 0 or 1 (mod 4) and let S be a de�ning set for color-

ing of M(K2�Pn); �). If there is an integer k > 1 such that jS \ fa0k; a1k; b0k; b1kgj =��S \ fa0(k+4); a1(k+4); b0(k+4); b1(k+4)g�� = 1 and jS \ fa0j ; a1j ; b0j ; b1jgj = 0 for any j
where k < j < k + 4, then either fb0k; b1(k+4)g � S where c(b0k) 6= c(b1(k+4)) or
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fb1k; b0(k+4)g � S where c(b1k) 6= c(b0(k+4)): Furthermore in the unique coloring con-
taining S, (c(b0k); c(a0k)) = (c(a1(k+4)); c(b1(k+4))) and (c(b1k); c(a1k)) = (c(a0(k+4));
c(b0(k+4))):

PROOF. Let n � 12 and n � 0 or 1 (mod 4), and let S be a de�ning set for coloring
of M(K2 � Pn); �): Let k > 1 be a positive integer and

jS \ fa0k; a1k; b0k; b1kgj =
��S \ fa0(k+4); a1(k+4); b0(k+4); b1(k+4)g�� = 1;

and jS \ fa0j ; a1j ; b0j ; b1jgj = 0 for any j where k < j < k+4. We consider the induced
subgraph

G0 = G[faij ; bij ; w : k � 1 � j � k + 5; 0 � i � 1g]:
Without loss of generality assume that fw; aij ; bij : 0 � i � 1; j 2 fk � 1; k + 5gg has
been colored and c(w) = 1. We consider the following cases.

� fb0k; b1(k+4)g * S and fb1k; b0(k+4)g 6� S:

� fb0k; b1(k+4)g � S and c(b0k) = c(b1(k+4)):

� fb1k; b0(k+4)g � S and c(b1k) = c(b0(k+4)):

In each case we checked all possibilities for S \ V (G0) and noticed that in each
possibility either there were two colorings of G0 containing

(S \ V (G0)) [ fw; aij ; bij : 0 � i � 1; j 2 fk � 1; k + 5gg

or there was a non-colorable vertex in G0: So either fb0k; b1(k+4)g � S where c(b0k) 6=
c(b1(k+4)), or fb1k; b0(k+4)g � S where c(b1k) 6= c(b0(k+4)). Also if fb0k; b1(k+4)g � S, or
fb1k; b0(k+4)g � S, then (c(b0k); c(a0k)) = (c(a1(k+4)); c(b1(k+4))) and (c(b1k); c(a1k)) =
(c(a0(k+4)); c(b0(k+4))): Hence, the the proof is complete.

THEOREM 7. For each n � 8 with n � 0 or 1 (mod 4); d(M(K2 � Pn); �) =
2 +

�
n�2
4

�
:

PROOF. Let n � 8 and n � 0 or 1 (mod 4). It follows from Lemmas 1 and 3 that
d(M(K2 � Pn); �) � 2+

�
n�2
4

�
. Let S be a de�ning set for coloring of M(K2 � Pn)

and let c(w) = 1 in the unique coloring c containing S: We proceed with Claim 1.
CLAIM 1. jSj � 2 +

�
n�2
4

�
:

To see the proof of our claim, we employ induction on n. For n = 8; 9 the result
follows from Theorem 5. So assume that the result holds for any positive integer less
than n. Let n � 12. It follows from Lemmas 1, 3 and 6 that there is a positive integer
k > 1 such that

jS \ fa0k; a1k; b0k; b1kgj =
��S \ fa0(k+4); a1(k+4); b0(k+4); b1(k+4)g��

=
��S \ fa0(k+8); a1(k+8); b0(k+8); b1(k+8)g��

= 1

and jS \ fa0j ; a1j ; b0j ; b1jgj = 0 for any j 2 fk+1; k+2; :::; k+7gnfk+4g. By Lemma
6 we may assume that fb0k; b1(k+4); b0(k+8)g � S. But then

(c(b0k); c(a0k)) = (c(a1(k+4)); c(b1(k+4))) = (c(b0(k+8)); c(a0(k+8)))
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and
(c(a1k); c(b1k)) = (c(b0(k+4)); c(a0(k+4))) = (c(a1(k+8)); c(b1(k+8))):

We delete the subgraph of G induced by faij ; bij : 0 � i � 1; k � j < k + 8g and
also delete all edges joining w to fbij : 0 � i � 1; k � j < k + 8g. Then we join
b0(k�1) to a0(k+8), a0(k�1) to b0(k+8), a1(k�1) to b1(k+8) and b1(k�1) to a1(k+8) to obtain
M(K2 � Pn�8). Now by the hypothesis of induction jSj � 2 � 2 +

�
n�8�2

4

�
which

implies that jSj � 2 +
�
n�2
4

�
.

So d(M(K2 � Pn); �) � 2 +
�
n�2
4

�
: Now it is su¢ cient to de�ne a de�ning set of

required cardinality.

� n � 0 (mod 4).
For n � 0 (mod 8) we de�ne S = fa11; b0(8i+3); b1(8j�1); b0n : i � 0; j � 1g, where
c(a11) = 2; c(b0(8k+3)) = 2; c(b1(8k�1)) = 3 and c(b0n) = 3:

For n 6� 0 (mod 8) we de�ne S = fa11; b0(8i+3); b1(8j�1); b1n : i � 0; j � 1g, where
c(a11) = 2; c(b0(8k+3)) = 2; c(b1(8k�1)) = 3 and c(b1n) = 2:

� n � 1 (mod 4):
For n � 1 (mod 8) we de�ne S = fa11; b0(8i+3); b1(8j�1); a0n : i � 0; j � 1g, where
c(a11) = 2; c(b0(8k+3)) = 2; c(b1(8k�1)) = 3 and c(a0n) = 3.

For n 6� 1 (mod 8) we de�ne S = fa11; b0(8i+3); b1(8j�1); a1n : i � 0; j � 1g, where
c(a11) = 2; c(b0(8k+3)) = 2; c(b1(8k�1)) = 3 and c(a1n) = 2:

Then S is a de�ning set of the required cardinality in each case. Hence, d(M(K2�
Pn); �) = 2 +

�
n�2
4

�
: Hence, the the proof is complete.
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