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Abstract

Some inequalities of Simpson’s type for quasi-convex functions in terms of
third derivatives are introduced. Applications to Simpson’s numerical quadrature
rule is also given.

1 Introduction

Suppose f : [a,b] — R is fourth times continuously differentiable function on (a,b) and

)’f(4)“ = SUDge(a,b) ‘f(4) (x)‘ < 0.

Then the following inequality

/bf@c)dx(b‘“) @i (5 v < S (s

6 2

holds, and in the literature known as Simpson’s inequality. It is well known that if the
function f is neither four times differentiable nor its fourth derivative is bounded on
(a,b), then we cannot apply the classical Simpson quadrature formula.

In [13], Pecari¢ et al. obtained some inequalities of Simpson’s type for functions
whose n-th derivative, n € {0, 1,2, 3} is of bounded variation, as follow:

THEOREM 1.Let n € {0,1,2,3}. Let f be a real function on [a,b] such that £
is function of bounded variation. Then

/bf(x) to- O r@rar (“50) 410 <c. <ba>"“\:/ (). @

where,
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an 1s the total variation o on the interval |a, b|.
d V2 (f™) is th | variation of f(™ on the i 1[a,b

Here we note that, the inequality (2) with n = 0, was proved by Dragomir [3]. Also,
Ghizzetti et al. [9], proved that if "’ is an absolutely continuous function with total
variation \/Z (f), then (2) holds with n = 3.

In recent years many authors had established several generalizations of the Simp-
son’s inequality for functions of bounded variation and for Lipschitzian, monotonic,
and absolutely continuous functions via kernels. For refinements, counterparts, gener-
alizations and several Simpson’s type inequalities see [2]-[13] and [15]-[17].

The notion of a quasi-convex function generalizes the notion of a convex functions.
More precisely, a function f : [a,b] — R, is said quasi-convex on [a, b] if

SOz + (1 =A)y) <max{f(z),f ()},

for all z,y € [a,b] and A € [0,1]. Clearly, any convex function is a quasi-convex
function. Furthermore, there exist quasi-convex functions which are neither convex
nor continuous, For more details about quasi-convex functions, we refer the reader to
[14].

EXAMPLE 1. The floor function fio0r(2) = 2], is the largest integer not greater
than z, is an example of a monotonic increasing function which is quasi-convex but it
is neither convex nor continuous.

In the same time, one can note that the quasi-convex functions may be not of
bounded variation, i.e., there exist quasi-convex functions which are not of bounded
variation. For example, consider the function f : [0,2] — R, defined by

| xsin (g) if x #£0,
f(x)_{ 0 ife=0,

is quasi-convex but not of bounded variation on [0, 2]. Therefore, we cannot apply the
above inequalities. For new inequalities via quasi-convex function see [1, 2].

In this paper, we obtain some inequalities of Simpson type via quasi-convex function.
This approach allows us to investigate Simpson’s quadrature rule that has restrictions
on the behavior of the integrand and thus to deal with larger classes of functions.

2 Inequalities of Simpson’s Type for Quasi-Convex
Functions

Let us begin with the following lemma:

LEMMA 1. Let f” : I C R — R be an absolutely continuous function on I° such
that f” € Lla,b], where a,b € I with a < b. If | f"'| is quasi-convex on [a, b], then the
following inequality holds:

Aﬁﬂ@dw—“ﬁj”{ﬂ@+wf(“§b)+fwﬂ
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where,
p(t)= {
PROOF. We note that

1 1/2
1:/0 p (&) 1" (ta + (1 — t) b) dt é/o 2 <t—;> £ (ta+ (1—t)b) dt
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Integrating by parts, we get

;o étz (t;) f”(ta:_(lb—t)b) :/2 LIPS f/(tcz:(lb);t)b) ;/2
b1 (t - ;) fita+=0b /
- 6 (3t - 2)( 1) . (tcz:_(lb); t) b) 1/2

_ _if’(%b)gﬂ“;b) Lfe) it (1-0b)
U(a-b* 6@-b" 6@-0° Jo (a—b)”
+;f( ) 1 S 2f(%) [P fltat(-Db)
W7 G-t 6@ g @b

Setting x = ta+ (1 — t) b, and dx = (a — b)dt, gives

= [Crwa- O i@ var () £ 10

which gives the desired representation (3).Therefore, we can state the following result.
THEOREM 2. Let f” : I € R — R be an absolutely continuous function on I°
such that f" € Lla,b], where a,b € I with a < b. If | "] is quasi-convex on [a, b], then

the following inequality holds:
a+b
fla)+4f (52) + £ )

)yl (7))

(z)dx — (b
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PROOF. From Lemma 2 and quasi-convexity of |f"’|, we have

-5 @ s (“;b>+f(b)H

1
(b a)’ / p(t) £ (ta+ (1 — t)b)] dt

- (b—6a)4/01/2

b—a)t [*
+( a) /
6 1/2

IN

£ (t— ;))U”’(ta—i—(l—t)b)dt

(t— 1) <t—;)‘ 7 (ba+ (1 — 1) b)| dt

(b_6a)4 /01/2t2 (;_Q .max{u"' )1, " (“;bﬂ}dt
—|—(b_6a)4/1;(1—t)2 (t—;)-maX{f///(a+b> " (a )|}
_ (- [max{|f’” (@), | " (a;b)‘}erax{ f”’(a;b)

1152
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which completes the proof.

The corresponding version of the inequality (2.2) for powers in terms of the third
derivative is incorporated as follows:

THEOREM 3. Let f”” : I C R — R be an absolutely continuous function on 7° such
that f"” € Lla,b], where a,b € I with a < b. If |f"'|?, ¢ = p/(p — 1), is quasi-convex
on [a,b], for some fixed p > 1, then the following inequality holds:

/abf@)dx_(bg“) {f( )+ 4f (“b) +f(b>}
9=1/p iZ —a)! (F<p+ 13p +22p+ 1) > Kmax{
+ <max{ f" (a—;—b) ) 1

—1/p _ 4
= M(B(p—kl 2p+1) Up[ max

(ol (2 o))
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PROOF. From Lemma 2 and the Hélder’s inequality, we have

/abf(w)dx o) [f<a>+4f(“jb)+f<b>H

IN

(b—a)' / p (1) /" (ta+ (1 — ) b)] dt

+(b_6a)4 /1;2
(b_ﬁa)4 (/01/2 {tQ (; - t)F‘“) ' (/01/2 | (ta+ (1 —1t) b)th>
G (e () ) ([ emeacomra)

Since f is quasi-convex by Hermite-Hadamard’s inequality, we have

" a’+b
d (2)
111 a’+b
/ (2)

A combination of the above numbered inequalities, we get
b
b—a a+b
[ r@a- 2 @ v (Y50) + s

e (o) o)

# (max {7 (52) i <a>|‘J})1/q] ,

which completes the proof.

t2 (t—;>'|f”’(ta+(1—t)b)|dt

(t—1) (t— ;)‘ 7 (ba+ (1 — 1) b)| d

1/q

IN
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1/2
/ |f”’(ta+(1—t)b)|th§max{
0

and
q

1" @},

1
/ If" (ta+ (1 —t)b)|"dt < max{
1/2

T <b>|"})w

REMARK 1. Similar inequalities involving third derivative may be stated if one
assumes that || is convex on [a, b]. The details are left to the interested readers.
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3 Applications to Simpson’s Formula

Let d be a division of the interval [a,b], i.e., d:a =20 < 21 < ... < Tp—1 < Ty, = b,
h; = (241 — ;) /2 and consider the Simpson’s formula

n_lf x;) F4f (x; + hy) + f (i1
B SLCEIENES (0

6 (I’H_l — LEl)

It is well known that if the function f : [a,b] — R, is differentiable such that f® (z)
exists on (a,b) and

M = sup z€(a,b) ’f(4) (x)’ < o9,

then

b
I=/f(x)dw=5(f,d)+Es(f,d)7 (5)

where the approximation error Eg (f,d) of the integral I by the Simpson’s formula
S (f,d) satisfies

M =
|ES f, 7(); Tit+1 —

However, if the mapping f is not fourth differentiable or the fourth derivative is not
bounded on (a, b), then (5) cannot be applied. In the following we give a new estimation
for the remainder term Eg (f,d) in terms of the third derivative.

PROPOSITION 1. Let f” : I C R — R be an absolutely continuous function on
I° such that f"” € L[a,b], where a,b € I with a < b. If | f"'| is quasi-convex on [a, b],
then for every division d of [a, b], the following holds:

|Bs (£,d)] < 1152 - (i1 — )" [max{f’” (z), f" (W)}

2
+ max {f/// (xz +2$'i+1> 7f/// (-’U—&-l)}] )

PROOF. Applying Theorem 2 on the subintervals [z;,2;41], ({ = 0,1,...,n — 1) of
the division d, we get

Ti41
Ti+ Tip1

[ r@de = B g (B 4 )]

g3
m [ Ti T Tig1
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o (i —m)t [max {|f’” (@),
gesii

1152
" xi+xi+1
().

-Hnax{




116 Inequalities of Simpson Type

Summing over 4 from 0 to n — 1 and taking into account that |f"”’| is quasi-convex, we

deduce that
()

A (ﬂfi+1)|}] :

b 1

n—

[r@a-stal < g3 Ea e max {17 22,
f/// <xl +2Ii+1)

Acknowledgements. The authors would like to thank the anonymous referee for
valuable suggestions that have been implemented in the final version of the manuscript.

a

—|—max{

which completes the proof.
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