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Abstract
In this paper, using the concept of statistical �-convergence which is stronger

than convergence and statistical convegence we obtain a Korovkin type approxi-
mation theorem for sequences of positive linear operators from H! to CB(I) where
I = [0;1) and ! is a modulus of continuity type functions. Also, we construct
an example such that our new approximation result works but its classical and
statistical cases do not. We also compute the rates of statistical �-convergence of
sequence of positive linear operators.

1 Introduction

For a sequence fLng of positive linear operators on C (X), the space of real valued con-
tinuous functions on a compact subset X of real numbers, Korovkin [13] established
�rst the su¢ cient conditions for the uniform convergence of Ln (f) to a function f by
using the test function fi de�ned by fi (x) = xi, (i = 0; 1; 2). Later many researchers
have investigated these conditions for various operators de�ned on di¤erent spaces.
Using the concept of statistical convergence in the approximation theory provides us
with many advantages. In particular, the matrix summability methods of Cesáro type
are strong enough to correct the lack of convergence of various sequences of linear op-
erators such as the interpolation operator of Hermite-Fejér [5], because these types of
operators do not converge at points of simple discontinuity. Furthermore, in recent
years, with the help of the concept of uniform statistical convergence, which is a regu-
lar (non-matrix) summability transformation, various statistical approximation results
have been proved [2, 3, 7, 8, 9, 11, 12]. Also, Çakar and Gadjiev have introduced the
classical case of the Korovkin-type results in on the space H! where ! is a modulus of
continuity type functions [6]. Recently various kind of statistical convergence which is
stronger than the statistical convergence has been introduced by Mursaleen and Edely
[15]. We �rst recall these convergence methods.
Let K be a subset of N, the set of natural numbers, then the natural density of K,

denoted by �(K), is given by

�(K) := lim
n

1

n
jfk � n : k 2 K gj
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102 Statistical Extension of Korovkin Type Approximation

whenever the limit exists, where jBj denotes the cardinality of the set B. Then a
sequence x = fxkg of numbers is statistically convergent to L provided that, for every
" > 0; � fk : jxk � Lj � "g = 0 holds ([10, 18]). In this case we write st-limk xk = L.
Notice that every convergent sequence is statistically convergent to the same value,

but its converse is not true.
Let � be a one-to-one mapping from the set of N into itself. A continuous linear

functional ' de�ned on the space l1 of all bounded sequences is called an invariant
mean (or �-mean) [16] if and only if
(i) '(x) � 0 when the sequence x = fxkg has xk � 0 for all k;
(ii) '(e) = 1, where e = (1; 1; :::);
(iii) '(x) = '((x�(n))) for all x 2 l1:
Thus, �-mean extends the limit functional on c of all convergent sequences in the

sense that '(x) = limx for all x 2 c [14]. Consequently, c � V� where V� is the set of
bounded sequences all of whose �-means are equal. It is known [17] that

V� =

�
x 2 l1 : lim

p
tpm(x) = L uniformly in m, L = �- limx

�
where

tpm (x) :=
xm + x�(m) + x�2(m) + :::+ x�p(m)

p+ 1
:

We say that a bounded sequence x = fxkg is �-convergent if and only if x 2 V�.
Let

V s� =

(
x 2 l1 : st� lim tpm

p

(x) = L uniformly in m, L = �- limx

)
:

A sequence x = fxkg is said to be statistically �-convergent to L if and only if x 2 V s� :In
this case we write �(�)-limxk = L. That is,

lim
n

1

n
jfp � n : jtpm (x)� Lj � "gj = 0;

uniformly in m: Using the above de�nitions, the next result follows immediately.
LEMMA 1. Statistical convergence implies statistical �-convergence.
However, one can construct an example which guarantees that the converse of

Lemma1 is not always true. Such an example was given in [15] as follows:
EXAMPLE 1.Consider the case �(n) = n + 1 and the sequence u = fumg de�ned

as

um =

�
1 if m is odd,
�1 if m is even,

(1)

is statistically �-convergence (� (�)-limum = 0) but it is neither convergent nor statis-
tically convergent.
With the above terminology, the purpose of the present paper is to obtain a

Korovkin-type approximation theorem for sequences of positive linear operators from
H! to CB(I) where I = [0;1) by means of the concept of statistical �-convergence.
Also, by considering Lemma 1 and the above Example 1, we will construct a sequence
of positive linear operators such that while our new results work, their classical and
statistical cases do not work. Finally, we compute the rate of statistical �-convergence.
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2 Statistical �-Convergence of Positive Linear Oper-
ators

Throughout this paper I := [0;1). C (I) is the space of all real-valued continuous
functions on I and CB (I) := ff 2 C (I) : f is bounded on Ig. The supremum norm
on CB (I) is given by

kfkCB(I) := sup
x2I

jf (x)j ; (f 2 CB (I)) .

Also, let H! is the space of all real valued functions f de�ned on I and satisfying

jf (x)� f (y)j � !
�
f ;

���� x

1 + x
� y

1 + y

����� (2)

where ! (f ; �1) := ! (�1) satis�es the following conditions (see for details [6]):
a) ! is a non-negative increasing function on [0;1) ;
b) ! (�1 + �2) � ! (�1) + ! (�2)
c) lim

�1!0
! (�1) = 0

Let L be a linear operator from H! into CB (I). Then, as usual, we say that L is
positive provided that f � 0 implies L (f) � 0. Also, we denote the value of L (f) at
a point x 2 I by L(f(u);x) or, brie�y, L(f ;x):
Throughout the paper, we also use the following test functions

f0 (u) = 1, f1 (u) =
u

1 + u
and f2 (u) =

�
u

1 + u

�2
:

We now recall the classical case of the Korovkin-type results introduced in [6] on
the space H!. However, the proof also works for statistical convergence.

THEOREM 1. Let fLmg be a sequence of positive linear operators from H! into
CB (I). Then, for any f 2 H!,

lim kLm (f)� fkCB(I) = 0

is satis�ed if the following holds:

lim kLm (fi)� fikCB(I) = 0; i = 0; 1; 2:

THEOREM 2. Let fLmg be a sequence of positive linear operators from H! into
CB (I). Then, for any f 2 H!,

st- lim kLm (f)� fkCB(I) = 0

is satis�ed if the following holds:

st� lim kLm (fi)� fikCB(I) = 0; i = 0; 1; 2:

Now we have the following result.
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THEOREM 3. Let fLmg be a sequence of positive linear operators from H! into
CB (I). Then, for any f 2 H!,

�(�)� lim kLm (f)� fkCB(I) = 0 (3)

is satis�ed if the following holds:

�(�)� lim kLm (fi)� fikCB(I) = 0; i = 0; 1; 2: (4)

PROOF. Suppose that (3) holds and let f 2 H!. From (4), for every " > 0, there

exist �1 > 0 such that jf (y)� f (x)j < " holds for all y 2 I satisfying
��� y
1+y �

x
1+x

��� < �1.
Let I�1 :=

n
x 2 I :

��� y
1+y �

x
1+x

��� < �1o. So we can write
jf (y)� f (x)j = jf (y)� f (x)j�I�1 (y) + jf (y)� f (x)j�InI�1 (y)

< "+ 2Nf�InI�1
(y) ; (5)

where �D denotes the characteristic function of the set D and Nf := kfkCB(I). Also
we get that

�InI�1
(y) � 1

�21

�
y

1 + y
� x

1 + x

�2
: (6)

Combining (5) with (6) we have

jf (y)� f (x)j � "+ 2Nf
�21

�
y

1 + y
� x

1 + x

�2
: (7)

Using linearity and positivity of the operators Lm we get, for any m 2 N, from (7),
that

jtpm (L (f ;x))� f (x)j

� 1

p+ 1

�
Lm (jf (u)� f (x)j ;x) + L�(m) (jf (u)� f (x)j ;x)

+ � � �+ L�p(m) (jf (u)� f (x)j ;x)
�
+ jf (x)j jtpm (L (f0;x))� f0 (x)j

� 2Nf

�21(p+ 1)

 
Lm

 �
u

1 + u
� x

1 + x

�2
;x

!
+ L�(m)

 �
u

1 + u
� x

1 + x

�2
;x

!

+ � � �+ L�p(m)

 �
u

1 + u
� x

1 + x

�2
;x

!!
+"tpm (L (f0;x)) +Nf jtpm (L (f0;x))� f0 (x)j

� "+

�
"+Nf +

6Nf

�21

�
jtpm (L (f0;x))� f0 (x)j+

4Nf

�21
jtpm (L (f1;x))� f1 (x)j

+
2Nf

�21
jtpm (L (f2;x))� f2 (x)j :
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Then, we can write

ktpm (L (f))� fkCB(I) � "+Kfktpm (L (f0))� f0kCB(I) + ktpm (L (f1))� f1kCB(I)
+ ktpm (L (f2))� f2kCB(I)g (8)

where K := max
n
"+Nf +

6Nf

�21
;
4Nf

�21
;
2Nf

�21

o
. For a given r > 0, choose " > 0 such that

" < r. Then, from (8),

���np � nj ktpm (L (f))� fkCB(I) � ro��� � iX
i=0

�����p � nj ktpm (L (fi))� fikCB(I) � r � "
3K

����� :
Therefore, using (3), we obtain (4). The proof is complete.

REMARK 1. Now we give an example such that Theorem3 works but the case
of classical and statistical do not work. Suppose that I = [0;1). We consider the
following positive linear operators de�ned on H! introduced by Bleimann, Butzer and
Hahn [4]:

Tm (f ;x) =
1 + um
(1 + x)

m

mX
k=0

f

�
k

m� k + 1

��
m

k

�
xk, (9)

where f 2 H!, x 2 I, m 2 N and um is given by (1). Now, consider the case
� (n) = n+ 1. If we use de�nition of Tm and the fact that�

m

k + 1

�
=

m

k + 1

�
m� 1
k

�
;

�
m

k + 2

�
=

m (m� 1)
(k + 1) (k + 2)

�
m� 2
k

�
;

we can see that

Tm (f0;x) = 1 + um

Tm (f1;x) = (1 + um)
m

m+ 1

x

1 + x

Tm (f2;x) = (1 + um)

 
x2

(1 + x)
2

m (m� 1)
(m+ 1)

2 +
x

1 + x

m

(m+ 1)
2

!

and �(�)-lim kTm (fi)� fikCB(I) = 0, i = 0; 1; 2. Then, observe that the sequence of
positive linear operators fTmg de�ned by (9) satisfy all hypotheses of Theorem3. So,
by Theorem3, we have

� (�)� lim kTm(f)� fkCB(I) = 0:

However, since fumg is not convergent and statistical convergent, we conclude that
classical (Theorem1) and statistical (Theorem2) versions of our result do not work for
the operators Tm in (9) while our Theorem3 still works.
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3 Rate of Statistical �-Convergence

In this section, we compute the corresponding rate in statistical �-convergence in The-
orem3.

DEFINITION 1. A sequence x = fxmg is statistically �-convergent to a number L
with the rate of � 2 (0; 1) if for every " > 0,

lim
n

jfp � n : jtpm (x)� Lj � "gj
n1��

= 0; uniformly in m:

In this case, it is denoted by

xm � L = o(n��) (� (�)) :

Using this de�nition, we obtain the following auxiliary result.

LEMMA 2. Let x = fxmg and y = fymg be sequences. Assume that xm � L1 =
o(n��1) (� (�)) and ym � L2 = o(n��2) (� (�)) : Then we have

(i) (xm � L1)� (ym � L2) = o(n��) (� (�)) ;where � := min f�1; �2g ;

(ii) �(xm � L1) = o(n��1) (� (�)) ; for real number �:

PROOF. (i) Assume that xm�L1 = o(n��1) (� (�)) and ym�L2 = o(n��2) (� (�)) :
Then, for " > 0, observe that

jfp � n : j(tpm (x)� L1)� (tpm (y)� L2)j � "gj
n1��

�
���p � n : jtpm (x)� L1j � "

2

	��+ ���p � n : jtpm (y)� L2j � "
2

	��
n1��

�
���p � n : jtpm (x)� L1j � "

2

	��
n1��1

+

���p � n : jtpm (y)� L2j � "
2

	��
n1��2

: (10)

Now by taking the limit as n!1 in (10) and using the hypotheses, we conclude that

lim
n

jfp � n : j(tpm (x)� L1)� (tpm (y)� L2)j � "gj
n1��

= 0; uniformly in m,

which completes the proof of (i). Since the proof of (ii) is similar, we omit it.
Modulus [1] is de�ned as follows:

�
! (f ; �1) = sup

�
jf (u)� f (x)j : u; x 2 K;

���� u

1 + u
� x

1 + x

���� � �1� ; (f 2 H!) :
It is clear that, similar to the classical modulus of continuity,

�
! (f ; �1) satis�es the

following conditions for all f 2 H!:

(1)
�
! (f ; �1)! 0 if �1 ! 0;

(2) jf (u)� f (x)j � �
! (f ; �1)

�
1 +

( u
1+u�

x
1+x )

2

�21

�
:
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Now we have the following result.

THEOREM 4. Let fLmg be a sequence of positive linear operators from H! into
CB (I). Assume that the following conditions hold:
(i) kLm (f0)� f0kCB(I) = o(n

��1) (� (�)) ,

(ii)
�
! (f ;�pm) = o(n

��2) (� (�)) , where �pm :=
q
ktpm (L('))kCB(I) with '(u) =�

u
1+u �

x
1+x

�2
. Then, for any f 2 H!,

kLm (f)� f kCB(I) = o(n
��) (� (�)) ;

where � := min f�1; �2g.
PROOF. Let f 2 H! and x 2 I be �xed. Using linearity and positivity of the Lm,

we have, for any m 2 N,

jtpm (L (f ;x))� f (x)j

� 1

p+ 1

�
Lm (jf (u)� f (x)j ;x) + L�(m) (jf (u)� f (x)j ;x)

+ � � �+ L�p(m) (jf (u)� f (x)j ;x)
�
+ jf (x)j jtpm (L (f0;x))� f0 (x)j

�
�
! (f ; �1)

p+ 1

0B@Lm
0B@1 +

�
u
1+u �

x
1+x

�2
�21

;x

1CA+ L�(m)
0B@1 +

�
u
1+u �

x
1+x

�2
�21

;x

1CA
+ � � �+ L�p(m)

0B@1 +
�

u
1+u �

x
1+x

�2
�21

;x

1CA
1CA+N jtpm (L (f0;x))� f0 (x)j

� �
! (f ; �1) jtpm (L (f0;x))� f0 (x)j+

�
! (f ; �1)

�21
tpm (L(';x)) +

�
! (f ; �1)

+N jtpm (L (f0;x))� f0 (x)j ;

where N := kfkCB(I) : Taking supremum over x 2 I on the both-sides of the above
inequality, we obtain, for any �1 > 0,

ktpm (L (f))� fkCB(I)

� �
! (f ; �1) ktpm (L (f0))� f0kCB(I) +

�
! (f ; �1)

�21
ktpm (L('))kCB(I)

+
�
! (f ; �1) +N ktpm (L (f0))� f0kCB(I) :

Now if we take �1 := �pm :=
q
ktpm (L('))kCB(I), then we may write

ktpm (L (f))� fkCB(I) � D
n�
! (f ; �1) ktpm (L (f0))� f0kCB(I) +

�
! (f ; �1)

+ ktpm (L (f0))� f0kCB(I)
o

(11)
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where D = max f2; Ng. For a given r > 0; from (11), we get���np � n : ktpm (L (f))� fkCB(I) � ro���
n1��

�

���np � n : �! (f ; �1) �p r
3D

o���
n1��2

+

���np � n : ktpm (L (f0))� f0kCB(I) �p r
3D

o���
n1��1

+

���np � n : �! (f ; �1) � r
3D

o���
n1��2

+

���np � n : ktpm (L (f0))� f0kCB(I) � r
3D

o���
n1��1

:

Now, using (i) and (ii), we obtain

lim
n

���np � n : ktpm (L (f))� fkCB(I) � ro���
n1��

= 0, uniformly in m,

which means
kLm (f)� f kCB(I) = o(n

��) (� (�)) :

The proof is completed.

References

[1] A. Alt¬n, O. Do¼gru and M.A. Özarslan, Korovkin type approximation properties
of bivariate Blemann, Butzer and Hahn operators, Proceedings of the 8th WSEAS
International Conference on APPLIEDMATHEMATIS, Tenerife, Span, December
16-18(2005), 234�238.

[2] G. A. Anastassiou and O. Duman, A Baskakov type generalization of statistical
Korovkin theory, J. Math. Anal. Appl., 340(2008), 476�486.

[3] G. A. Anastassiou and O. Duman, Statistical fuzzy approximation by fuzzy posi-
tive linear operators, Comput. Math. Appl., 55(2008), 573�580.

[4] G. Bleimann, P. L. Butzer and L. Hahn, A Bernstein type operator approximating
continuous functions on semiaxis, Indag. Math., 42(1980), 255�262.

[5] R. Bojanic and M. K. Khan, Summability of Hermite-Fejér interpolation for func-
tions of bounded variation, J. Natur. Sci. Math. 32(1992), 5�10.

[6] Ö. Çakar and A. D. Gadjiev, On uniform approximation by Bleimann, Butzer and
Hahn on all positive semiaxis, Tras. Acad. Sci. Azerb. Ser. Phys. Tech. Math. Sci.
19(1999), 21�26.

[7] O. Duman, M. K. Khan and C. Orhan, A-statistical convergence of approximating
operators, Math. Inequal. Appl., 4(2003), 689�699.
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