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Abstract

In this paper, we study the uniqueness problems on meromorphic functions
concerning di¤erential polynomials, and obtain two theorems which generalize
and improve some known results.

1 Introduction

In this paper, a meromorphic function means meromorphic in the open complex plane.
We shall adopt the standard notations in Nevanlinna�s value distribution theory of
meromorphic functions (see [1, 2]).
Let f(z) and g(z) be two nonconstant meromorphic functions, a 2 C

S
f1g:We say

that f and g share the value a IM if f � a and g� a have the same zeros. Moreover, if
f�a and g�a have the same zeros with the same multiplicities, we say that they share
the value a CM. Let z0 be the zero of f�1 with multiplicity p and the zero of g�1 with
multiplicity q:We denote by N1)

E (r; 1=(f�1)) the counting function of the zeros of f�1
where p = q = 1; and by NL(r; 1=(f � 1)) the counting function of the zeros of f � 1
where p > q � 1; each point in these counting functions is counted only once. In the
same way, we can de�ne N1)

E (r; 1=(g�1)) and NL(r; 1=(g�1)):We use Np)(r; 1=(f�a))
to denote the counting function of the zeros of f�a whose multiplicities are not greater
than p; and N(p(r; 1=(f�a)) to denote the counting function of the zeros of f�a whose
multiplicities are not less than p: Respectively, Np)(r; 1=(f � a)) and N (p(r; 1=(f � a))
are their reduced functions. Set

Np

�
r;

1

f � a

�
= N

�
r;

1

f � a

�
+N (2

�
r;

1

f � a

�
+ � � �+N (p

�
r;

1

f � a

�
:

Further, we de�ne

�p(a; f) = 1� lim
r!1

Np(r; 1=(f � a))
T (r; f)

:
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92 Value-Sharing of Meromorphic Functions

For the sake of simplicity, we also use the notations Ckj = (kj ); and m
� := ��m;

where �� =

(
0; � = 0;

1; � 6= 0:
Fang [4] proved the following results.

THEOREM A. Let f; g be nonconstant entire functions, and n; k be positive
integers with n > 2k + 4: If [fn](k) and [gn](k) share 1 CM, then either f = c1ecz; g =
c2e

�cz; where c1; c2 and c are constants satisfying (�1)k(c1c2)n(nc)2k = 1 or f = tg
for a constant t such that tn = 1:

THEOREM B. Let f; g be nonconstant entire functions, and n; k be positive
integers with n > 2k + 8: If [fn(f � 1)](k) and [gn(g � 1)](k) share 1 CM, then f � g:
Recently, the authors in [5] and [6] extended Theorem A and Theorem B to mero-

morphic functions. In this paper, we generalize and improve the theorems above and
obtain the following two theorems.

THEOREM 1. Let f; g be transcendental meromorphic functions, and n; k; m be
positive integers with n > 9k + 6m� + 13: If [fn(�fm + �)](k); [gn(�gm + �)](k) share
1 IM, where �; � are constants such that j�j+ j�j 6= 0; and f; g share 1 IM,
(1) if �� 6= 0; m > 1 and (n; n +m) = 1; or while m = 1 and �(1; f) > 2=n; then
f � g;
(2) if �� = 0; then either f = tg; where t is a constant satisfying tn+m

�
= 1 or

f = c1e
cz; g = c2e

�cz; where c1; c2 and c are constants such that

(�1)k�2(c1c2)n+m
�
[(n+m�)c]2k = 1 or (�1)k�2(c1c2)n+m

�
[(n+m�)c]2k = 1:

We add an example here to point out the condition �(1; f) > 2=n cannot be
deleted.

EXAMPLE 1. Let � = m = k = 1; � = �1; and

f =
(n+ 1)(hn � 1)h
n(hn+1 � 1) ; g =

(n+ 1)(hn � 1)
n(hn+1 � 1) ;

where h = ez: Obviously, [fn(f � 1)]0; [gn(g � 1)]0 share 1 IM, and f; g share 1 IM,
�(1; f) = 0; f 6� g:
EXAMPLE 2. Let � = k = 1; � = m� = 0; and we can obtain two representations

of f and g : f = tg for a constant such that tn = 1; f = c1ecz; g = c2e�cz; where c1; c2
and c are constants satisfying (c1c2)n(nc)2 = �1:
THEOREM 2. Let f; g be transcendental meromorphic functions, and n; k; m be

positive integers n > 9k + 4m+ 15: If [fn(f � 1)m](k); [gn(g � 1)m](k) share 1 IM and
f; g share 1 IM, then either f � g or fn(f � 1)m � gn(g � 1)m:
EXAMPLE 3. Let m = k = 1; and

f =
(hn � 1)h
hn+1 � 1 ; g =

hn � 1
hn+1 � 1 ;

where h = ez: Obviously, [fn(f � 1)]0; [gn(g � 1)]0 share 1 IM, and f; g share 1 IM,
fn(f � 1) = gn(g � 1):
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2 Some Lemmas

In order to prove our results, we need the following lemmas.

LEMMA 1 (See [2],[7]). Let f be a nonconstant meromorphic function and n be a
positive integer. then T (r; anfn + an�1fn�1 + � � � + a1f) = nT (r; f) + S(r; f); where
ai are meromorphic functions such that an 6� 0; T (r; ai) = S(r; f) (i = 1; 2; :::; n):
LEMMA 2 (See [1]). Let f be a nonconstant meromorphic function and k be a

positive integer, and c be a nonzero �nite complex number, then

T (r; f) � N(r; f) +Nk+1
�
r;
1

f

�
+N

�
r;

1

f (k) � c

�
�N0

�
r;

1

f (k+1)

�
+ S(r; f);

where N0(r; 1=f (k+1)) is the counting function which only counts those points such that
f (k+1) = 0 but f(f (k) � c) 6= 0:
LEMMA 3 (See [1]). Let f be a transcendental meromorphic function and �1(z),

�2(z) be meromorphic functions such that T (r; �i) = S(r; f) (i = 1; 2); then

T (r; f) � N(r; f) +N
�

1

f � �1

�
+N

�
1

f � �2

�
+ S(r; f):

LEMMA 4 (See [8]). Let f be a nonconstant entire function and k � 2 be a positive
integer. If f � f (k) 6= 0; then f = eaz+b; where a(6= 0) and b are constants.
LEMMA 5 (See [9,10]). Let f be a nonconstant meromorphic function and k be a

positive integer, then

Np

�
r;

1

f (k)

�
� Np+k

�
r;
1

f

�
+kN(r; f)+S(r; f) � (p+k)N

�
r;
1

f

�
+kN(r; f)+S(r; f):

LEMMA 6. Let f; g be transcendental meromorphic functions, and k be a positive
integer. If f (k); g(k) share 1 IM, f; g share 1 IM, and

� = (2k + 3)�(1; f) + (2k + 3)�(1; g) + �(0; f) + �(0; g)
+ 2�k+1(0; f) + 3�k+1(0; g) > 4k + 12; (1)

then either f (k)g(k) � 1 or f � g:
Lemma 6 plays an important role in this paper, we add an example to show that

the condition (1) cannot be deleted.

EXAMPLE 4. Let f = � 1
2e
2z � 1

2e
z; g = 1

2e
�2z + 1

2e
�z: Obviously, f 0 g0 share 1

IM, and f; g share1 IM. Since T (r; f) = 2T (r; ez)+S(r; ez); and N(r; 1f ) = N(r;
1

ez+1 ):

The second main theorem gives T (r; ez) � N(r; 1ez )+N(r;
1

ez+1 )+S(r; e
z); so T (r; ez) =

N(r; 1
ez+1 ) + S(r; e

z); and �(0; f) = 1=2; but f 6� g; f 0g0 6� 1:
PROOF of Lemma 6. Let

h(z) =
�f (k+2)
f (k+1)

� 2 f
(k+1)

f (k) � 1

�
�
�g(k+2)
g(k+1)

� 2 g
(k+1)

g(k) � 1

�
: (2)
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If h(z) 6� 0; and suppose that z0 is a common simple 1-point of f (k) and g(k); then by
(2), we can get h(z0) = 0; and

N
1)
E

�
r;

1

f (k) � 1

�
= N

1)
E

�
r;

1

g(k) � 1

�
� N

�
r;
1

h

�
� N(r; h) +S(r; f) +S(r; g): (3)

By assumptions, we deduce from (2) that

N(r; h) � N(r; f) +N

�
r;
1

f

�
+N

�
r;
1

g

�
+NL

�
r;

1

f (k) � 1

�
+NL

�
r;

1

g(k) � 1

�
+N0(r;

1

f (k+1)
) +N0(r;

1

g(k+1)
); (4)

where N0(r; 1=f (k+1)) has the same meaning as in Lemma 2, and we have

T (r; f) + T (r; g) � N(r; f) +N(r; g) +Nk+1

�
r;
1

f

�
+Nk+1

�
r;
1

g

�
+N

�
r;

1

f (k) � 1

�
+N

�
r;

1

g(k) � 1

�
�N0

�
r;

1

f (k+1)

�
�N0

�
r;

1

g(k+1)

�
+ S(r; f) + S(r; g): (5)

Since f (k) and g(k) share 1 IM , we �nd

N

�
r;

1

f (k) � 1

�
+N

�
r;

1

g(k) � 1

�
� N

1)
E

�
r;

1

f (k) � 1

�
+NL

�
r;

1

g(k) � 1

�
+N

�
r;

1

f (k) � 1

�
� N

1)
E (r;

1

f (k) � 1) +NL(r;
1

g(k) � 1) + T (r; f) + kN(r; f) + S(r; f): (6)

By Lemma 5, we get

N

�
r;

1

f (k)

�
� Nk+1

�
r;
1

f

�
+ kN(r; f) + S(r; f); (7)

and

NL

�
r;

1

f (k) � 1

�
� (k + 1)N(r; f) +Nk+1

�
r;
1

f

�
+ S(r; f): (8)

In the same way, we have

NL

�
r;

1

g(k) � 1

�
� (k + 1)N(r; g) +Nk+1

�
r;
1

g

�
+ S(r; g): (9)

From (3)-(9), we obtain

T (r; g) � (2k + 3)N(r; f) + (2k + 3)N(r; g) +N

�
r;
1

f

�
+N

�
r;
1

g

�
+ 2Nk+1

�
r;
1

f

�
+ 3Nk+1

�
r;
1

g

�
+ S(r; f) + S(r; g):
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Without loss of generality, we suppose that there exists a set I with in�nite linear
measure such that T (r; f) � T (r; g) for r 2 I; then we deduce

T (r; g) � [(2k + 3)(1��(1; f)) + (2k + 3)(1��(1; g)) + (1��(0; f))
+(1��(0; g)) + 2(1� �k+1(0; f)) + 3(1� �k+1(0; g)) + "]T (r; g) + S(r; g)

for r 2 I and 0 < " < �� (4k + 12); that is

[�� (4k + 12)� "]T (r; g) � S(r; g);

this together with (1) may lead to a contradiction. Hence h(z) � 0; that is

f (k+2)

f (k+1)
� 2 f

(k+1)

f (k) � 1 =
g(k+2)

g(k+1)
� 2 g

(k+1)

g(k) � 1 :

Integration yields
1

f (k) � 1 =
bg(k) + a� b
g(k) � 1 ; (10)

where a (a 6= 0) and b are constants. Next, we consider three cases.
Case 1. If b = 0: Then from (10), we obtain

f = g=a+ p(z); (11)

where p(z) is a polynomial.
If p(z) 6� 0; since f is transcendental, then by Lemma 3, we have

T (r; f) � N(r; f) +N
�
r;
1

f

�
+N

�
r;
1

g

�
+ S(r; f): (12)

It follows from (11) and (12) that

T (r; f) � f3� [�(1; f) + �(0; f) + �(0; g)] + "gT (r; f) + S(r; g);

where 0 < " < (2k+2)(1��(1; f))+(2k+3)(1��(1; g))+2(1� �k+1(0; f))+3(1�
�k+1(0; g)): Therefore T (r; f) � f4k + 13��gT (r; f) + S(r; f); which and (1) lead to
T (r; f) � S(r; f) for r 2 I; a contradiction. So p(z) � 0; this yields a = 1; and f � g:
Case 2. Suppose that b 6= 0 and a 6= b:
If b = �1; then from (10), we have N(r; 1=(g(k) � a � 1)) = N(r; f (k)) = N(r; f):

Lemma 2 gives

T (r; g) � N(r; g) +Nk+1

�
r;
1

g

�
+N

�
r;

1

g(k) � (a+ 1)

�
�N0

�
r;

1

g(k+1)

�
+ S(r; g)

� (2k + 3)N(r; f) + (2k + 3)N(r; g) +N

�
r;
1

f

�
+N(r;

1

g
)

+2Nk+1

�
r;
1

f

�
+ 3Nk+1

�
r;
1

g

�
+ S(r; f) + S(r; g);
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which implies T (r; g) � f4k + 13��gT (r; g) + S(r; g); and T (r; g) � S(r; g) for r 2 I;
a contradiction, so b 6= �1; it follows from (10) that

f (k) � (1 + 1=b) = �a
b2[g(k) + (a� b)=b] ;

and

N

�
r;

1

g(k) + (a� b)=b

�
= N(r; f (k) � (1 + 1=b)) = N(r; f):

Similarly by Lemma 2, we have

T (r; g) � N(r; g) +Nk+1
�
r;
1

g

�
+N

�
r;

1

g(k) + (a� b)=b

�
�N0

�
r;

1

g(k+1)

�
+ S(r; g)

� (2k + 3)fN(r; f) +N(r; g)g+N
�
r;
1

f

�
+N

�
r;
1

g

�
+ 2Nk+1

�
r;
1

f

�
+ 3Nk+1

�
r;
1

g

�
+ S(r; g):

Using the argument as in Case 2, we can also get a contradiction.

Case 3. Suppose that b 6= 0 and a = b:
If b 6= �1; from (10), we have

N

�
r;

1

g(k) � 1=(1 + b)

�
= N

�
r;

1

f (k)

�
:

From (7) we get

N

�
r;

1

g(k) � 1=(1 + b)

�
� Nk+1

�
r;
1

f

�
+ kN(r; f) + S(r; f):

Lemma 2 means that

T (r; g) � N(r; g) +Nk+1
�
r;
1

g

�
+N

�
r;

1

f (k)

�
+ S(r; g):

Using the argument as in Case 2, a contradiction can also be obtained. Therefore
b = �1; and (10) implies f (k)g(k) � 1: Thus we get the conclusion of Lemma 6.

3 Proof of Theorem 1

Set F (z) = fn(�fm + �) and G(z) = gn(�gm + �); Lemma 1 gives

�(0; F ) = 1� lim
r!1

sup
N(r; 1=fn) +N(r; 1=(�fm + �))

(n+m�)T (r; f)
� 1� 1 +m�

n+m� : (13)
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Similarly,

�(0; G) � 1� 1 +m�

n+m� ; (14)

�(1; F ) = 1� lim
r!1

sup
N(r; f)

(n+m�)T (r; f)
� 1� 1

n+m� : (15)

In the same manner as above, we obtain

�(1; G) � 1� 1

n+m� : (16)

�k+1(0; F ) � 1� lim
r!1

sup
Nk+1(r; 1=f

n) +Nk+1(r; 1=(�f
m + �))

(n+m�)T (r; f)

� 1� k + 1 +m
�

n+m� : (17)

And

�k+1(0; G) � 1�
k + 1 +m�

n+m� : (18)

From (13)-(18), we get

� = (2k + 3)�(1; F ) + (2k + 3)�(1; G) + �(0; F )
+ �(0; G) + 2�k+1(0; F ) + 3�k+1(0; G)

� 4k + 13� [(9k + 13 + 7m�)=(n+m�)]:

Note that n > 9k + 13 + 6m�; we deduce that � > 4k + 12:
By Lemma 6, we deduce that either F (k)G(k) � 1 or F � G: Next, we consider two

cases.

Case 1. F (k)G(k) � 1: That is

[fn(�fm + �)](k)[gn(�gm + �)](k) � 1: (19)

If �� = 0: Lemma 4 and (19) give f(z) = c1ecz; g(z) = c2e�cz; where c1; c2 and c are
constants satisfying (�1)k�2(c1c2)n+m

�
[(n+m�)c]2k = 1 or (�1)k�2(c1c2)n+m

�
[(n+

m�)c]2k = 1; for all positive integers k:
If �� 6= 0: Since f; g share 1 IM and (19), we see that f is an entire function and

[fn(�fm + �)](k) 6= 0;1; [gn(�gm + �)](k) 6= 0;1: (20)

Let f = e�(z); where �(z) is a nonconstant entire function. By induction, we have

[�fn+m(z)](k) = q1(�
0; �00; :::; �(k))e(m+n)�(z); [�fn(z)](k) = q2(�

0; �00; :::; �(k))en�(z);

where qi(�0; �00; :::; �(k)) (i = 1; 2) are di¤erential polynomials.
Note that (20) and � 6= 0; � 6= 0; we �nd

q1(�
0; �00; :::; �(k))em�(z) + q2(�

0; �00; :::; �(k)) 6= 0; (21)
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and

T (r; �0) = m(r; �0) = m

�
r;
(e�)0

e�

�
= m

�
r;
f 0

f

�
= S(r; f):

Thus
T (r; �(j)) � T (r; �0) + S(r; f) = S(r; f) for j = 1; 2; :::; k:

T (r; q1) = S(r; f); T (r; q2) = S(r; f):

By Lemma 1, Lemma 3 and (21), we get T (r; f) � T (r; q1em�(z)) + S(r; f) = S(r; f);
which is a contradiction.

Case 2. F � G: That is
fn(�fm + �) � gn(�gm + �): (22)

If �� = 0; it follows from j�j+ j�j 6= 0 and (22) that f = tg; where t is a constant
such that tn+m

�
= 1:

If �� 6= 0; let f=g = H be not a constant, substituting f = gH into (22), we have

mT (r; f) = T (r; fm) + S(r; f) = (n+m� 1)T (r;H) + S(r; f):

The second main theorem gives

N(r; f) =
n+m�1X
j=1

N

�
r;

1

H � aj

�
� (n+m� 3)T (r;H) + S(r; f);

where (aj 6= 1) (j = 1; 2; � � � ; n+m� 1) are distinct roots of Hn+m = 1; and we �nd

�(1; f) = 1� lim
r!1

sup
(n+m� 3)T (r;H)

T (r; f)

� 1� m(n+m� 3)
n+m� 1 = (1�m) + 2m

n+m� 1 :

If m = 1; then �(1; f) � 2=n; a contradiction.
If m > 1; note that n > 9k + 13 + 6m; then �(1; f) < 0; this is impossible. So

H is a constant. If H 6� 1; we deduce g is a constant, which is a contradiction, thus
f � g: This completes the proof of Theorem 1.

4 Proof of Theorem 2

Set F (z) = fn(f � 1)m and G(z) = gn(g � 1)m; we obtain

�(0; F ) � 1� 2

n+m
; �(0; G) � 1� 2

n+m
: (23)

�(1; F ) = 1� lim
r!1

sup
N(r; f)

(n+m)T (r; f)
� 1� 1

n+m
: (24)

Likewise,

�(1; G) � 1� 1

n+m
: (25)
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Next, we have

�k+1(0; F ) � 1�
k + 1 +m

n+m
; �k+1(0; G) � 1�

k + 1 +m

n+m
: (26)

From (23)-(26), we get

� = (2k + 3)�(1; F ) + (2k + 3)�(1; G) + �(0; F )
+ �(0; G) + 2�k+1(0; F ) + 3�k+1(0; G)

� 4k + 13� (9k + 15 + 5m)=(n+m):

Note that n > 9k+15+ 4m; we deduce that � > 4k+12: Lemma 6 shows that either
F (k)G(k) � 1 or F � G: Next, we consider two cases.
Case 1. F (k)G(k) � 1: That is

[fn(f � 1)m](k)[gn(g � 1)m](k) � 1: (27)

By the same argument as proof in Theorem 1, we see that (27) does not hold.

Case 2. F � G: That is

fn(fm+� � �+(�1)iCm�im fm�i+� � �+(�1)m) � gn(gm+� � �+(�1)iCm�im gm�i+� � �+(�1)m):

Let H = f=g; if H is a constant, substituting f = gH into the equality above, we
deduce H � 1; and then f � g:
If H is not a constant, it follows from F � G that fn(f � 1)m � gn(g � 1)m: This

completes the proof of Theorem 2.
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