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Abstract

In this paper we study decay properties of some weakly dissipative wave equa-
tions of p-Laplacian type.

1 Introduction

We consider the initial boundary problem for the nonlinear wave equation of p-Laplacian
type with a weak nonlinear dissipation of the type

{ ue — Apu+ o () (ue+ | ug ™2 ug) =0, (1)
u(z,0) = up(z), u'(x,0)=wui(x) in Q.

where Ayu = div(|V,ulP~2V,u), p > 2, o is a positive function and 2 is a bounded
domain of R™(n > 1), with a smooth boundary IT' = 9.

For the problem (1), when p = 2 and o0 = 1, Messaoudi [7] showed that, for any
initial data (ug,u;) € Hg(Q) x L*(Q), the problem has a unique global solution with
energy decaying exponentially. In the case when g(u;) = |us|™ 2us, Nakao [9] showed
that (1) has a unique global weak solution if 0 < § —2 < 2/(n —3),n > 3 and a
global unique strong solution if § — 2 > 2/(n — 2),n > 3 (of course if n = 1 or 2
then the only requirement is 8 > 2). In addition to global existence the issue of the
decay rate was also addressed. In both cases it has been shown that the energy of
the solution decays algebraically if m > 2 and decays exponentially if m = 2. This
improves an earlier result by Nakao [10], where he studied the problem in an abstract
setting and established a theorem concerning decay of the solution energy only for the
casem —2<2/(n—2),n>3.

Our purpose in this paper is to give an energy decay estimates of the solutions to
the problem (1) for a weak nonlinear dissipation, we extend the results obtained by Ye
[16], also we prove in some cases an exponential decay when p > 2 and the dissipative
term is not necessarily superlinear near the origin.

We use a new method recently introduced by Martinez [6] (see also [2]) to study
the decay rate of solutions to the wave equation u” — A u+g(u’) = 0 in Q2 x R, where
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176 Weakly Dissipative Wave Equations

Q is a bounded domain of R™. This method is based on new integral inequality that
generalizes a result of Haraux [4].

Throughout this paper the functions considered are all real valued. We omit the
space variable © of u(z,t), us(z,t) and simply denote wu(x,t), ui(x,t) by u(t), u'(¢),
respectively, when no confusion arises. Let [ be a number with 2 <[ < co. We denote
by || . |l the L! norm over Q. In particular, L? norm is denoted || . [|l2. ( . ) denotes
the usual L? inner product. We use familiar function spaces W,"’.

2 Preliminaries and Main Results

The function o(¢) satisfies the following hypotheses:

(H1) 0 : Ry — R, is a nonincreasing function of class C! on R, satisfying

—+o0
/ o(r)dr = +o0.
0

We define the energy associated to the solution of (1) by the following formula
1 1
E(t) = 5llv'[3 + ];HVMHQ

We first state two well known lemmas, and then we state and prove a lemma that
will be needed later.

LEMMA 1 (Sobolev-Poincaré inequality). Let ¢ be a number with 2 < ¢ <
+oo (n < p)or2<q< £ (n>p+1), then there is a constant c. = (€2, q)
such that

lullg < el Vul, for e Wy ().

LEMMA 2 ([5]). Let E : Ry — R4 be a non-increasing function and assume that
there are two constants ¢ > 0 and A > 0 such that
+oo 1

BT (t)dt < ZE(o)qE(S), 0<S < +o0.
s
Then we have
1+g¢q
1+ qAt

1/q
E(t)gE(O)( ) Vi>0, if ¢>0

and
E(t) < E(0)e!=4t vt >0, if ¢=0.

LEMMA 3 ([6]). Let E : Ry — R, be a non-increasing function and ¢ : Ry — R
an increasing C? function such that

¢(0)=0 and ¢(t) —+oco as t— +oo.
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Assume that there exist ¢ > 0 and A > 0 such that

/+OO E@#)1T ()¢ (t) dt < %E(O)‘IE(S), 0<8 < +o0.
S

Then we have

1/
E(t) < E(0) (%) "0, i g0

and
E(t) < cB(0)e*® vt >0, if ¢=0.

PROOF. Let f : R, — R, be defined by f(z) := E(¢ '(z)), (we remark that
¢! has a sense by the hypotheses assumed on ¢). The function f is non-increasing,
f(0) = E(0) and if we set = := ¢(t) we obtain

o(T) ()
/ ’ f(:z:)‘”ld:z: _ / g E(¢_1(x))q+1 de
¢ ¢

(5) (s

)
= /T E(t)1 ¢/ (t)dt
S

1 q
< BO7E(S)

_ %E(O)qf(qS(S)), 0<S<T < +cc.

Setting s := ¢(.5) and letting T — 400, we deduce that
+oo 1
/ Pl < SEOFf(s), 05 < oo

Thanks to Lemma 2, we deduce the desired results.

Now we recall the following global existence, which can be established by using the
argument in [9].

THEOREM 1. Assume that (ug,u;) € W,P(Q) x L*(2). Then the problem (1)
admits a unique strong solution on © x [0, 00) in the class

C([0, 00[, Wy (€2)) N C*([0, 00), L*(R2)).

Our main result is the following.
THEOREM 2. Let (ug,u1) € Wol’p x L2(), 2 <m < (nzigﬁ and suppose that

(H1) holds. Then the solution u(x,t) of the problem (1) satisfies the following energy
decay estimates.

(1) If p = 2, then there exists a positive constant w such that

E(t) < C(E(0))exp (1 - w/ot o(r) dr) Vit > 0.
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(2) If p > 2, then there exists a positive constant C(E(0)) depending continuously
on E(0) such that

p < (CEOD N
- fOtO'(T)dT ’

EXAMPLES.
1) Suppose that o(t) = ti(, (0 <6 < 1), by applying Theorem 2 we obtain
E(t) < C(E0)e """ itae(0,1), p=2,

_(a-9p

E(t) <C(EO)t =2 if0<6<1, p>2

and
E(t) <C(E0)(Int)" 72 if0=1, I <m+1.
2) Suppose that o(t) = m, where k is a positive integer and

{ lnl(t) e h’l(t),
Ing11(¢) = In(Ing (¢)),

by applying Theorem 2, we obtain
E(t) < C(E0)(Ingg1t) 72 if0=1, p> 2,

(A-0)p
2

E(t) < C(E(0))t™ 7=

(Intlngt---Ing )72 if0< O <1, p>2.

3) Suppose that o(t) = m, by applying Theorem 2, we obtain

E(t) < C(BO)t 72" (Int)7> #f0<0<1,p>2
E(t) < C(E(0))(Int)~ 72" ifO=1,0<y<1,p>2,
E(t) < C(E(0))(Ingt)" 72 ifo=1,~v=1, p>2

3 Proof of Theorem 2

First we have the following energy identity for the problem (1).

LEMMA 4 (Energy identity). Let u(t,x) be a global solution to the problem (1)
on [0,00) as in Theorem 1. Then we have

E(t) +/Q/o a(s)u'(s)g(u'(s))dsdz = E(0)

for all t € [0,00) and where we set g(u') = u’ + |u’|m*2 o'
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Now, we shall derive the decay estimate for the solutions in Theorem 1. For this we
use the method of multipliers. We denote by ¢ various positive constants which may
be different at different occurrences.

We multiply the first equation of (1) by E9¢'u, where ¢ is a function satisfying all
the hypotheses of Lemma 3. We obtain

0 = / qus/ u’ — Apu+ o(t)(u + o™ ’))dmdt

T
/ qub/uu”da:dt / Eq¢'/uApudxdt
s Q

+/ qus/ w( + [ ) dwdt

T
[qui) /Quu dx} —/ (qE’ququ/—&—quzﬁ")/uu’da:dt
s

S Q

T T
—/ Eq(b'/ /| dxdt—i—/ Eq¢// |Vu|” dzdt
s )

+/ E%/ w( + | ) dadt.

We deduce that

T T T
2/ Eq+1¢/dt — _ |:Eq(b,/uuld$:| +/ (qE/E(I—1¢/+E(I¢//)/uu/dxdt
s s /S @
) T
+2/ E%/ ’Qda:dt+<—1>/ E%’/ |Vul|? dedt
p S Q
b [ B [ ottt s e @)

Define

It is clear that ¢ is a non decreasing function of class C? on R,. Hypothesis (H1)
ensures that
o(t) — +oo0 as t — +00. (3)

Since F is non-increasing, ¢’ is a bounded non-negative function on R, (and we denote
by p its maximum), we find that

‘ q¢/uuda¢

‘(qE’Eq1¢'+Eq¢”) / uu' dx
Q

q++3 r a+3+3
< —cETTrT2¢ Sgc,uE(S) v, Vi > S,

T
< o /S (—E/ (1) Bty ¥ dt
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T 1 1
+c/ E)" =T (—¢")dt
S

< uB(S)T s,

T T /
/ 12 ¢ 12 rm
2/3 E%¢ /Qu dxdt < 2/5 Eq%/ﬂa(t)(u + W) dzdt
T
— EIH)E'(t)d
< - [ poEod

< C'ETT(S)

where we have also used the Holder and Sobolev-Poincaré inequalities. Using these
estimates we conclude from (2) that

T
2 / B¢ (0)dt < cpB(S)THHT 4 JE(S)TH!
S

T
q ! ’ rm=2
+/S Ei¢ /Qa(t)u(u + || u')dxdt. (4)

Now, we estimate the terms of the right-hand side of (4) in order to apply the results
of Lemma 3:

T
/ B¢ / o) ul + )" o) dadt
s Q
T 2
= / E1¢ ot u(u + |u'|" " ) dzdt
s lu|<1
T 2
+/ E1¢’ o(t)u(u + |u/|" " u)dx dt
S |u'|>1

We estimate the first term, we get

T
/ o / sl + '™ Y dadt
S |[u’|<1

t T
< /qub' U(t)|uu’|dxdt—|—/ E1¢’ o () Jud!| |/ [™ 2 dadt
s Ju'|<1 S lu/|<1
T
< 2/ E1¢’ o(t)|un’|dzdt. (5)
s lu’|<1

Using the Holder and Sobolev Poincaré inequalities and the energy identity from
Lemma 4, we get

T
2/ E1¢’ o(t)|uu'|dzdt
S lu'|<1
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T B 2
< 2/ Eo(t) (/ |updm> (/ |u’|p—1dx> dt
S [u/|<1 lu'|<1
, N
< 2 [ Bdow i, < / |u’|v1dx> a
S J[u'|<1
- G
< Q)/ ET % ¢'o(t) [/ (u’g(u’))%)l)dx] dt
S Ju’|<1
2(p 1) %
< / E‘”Pqﬁa ( ) ( g(u’)dm) dt
S 2

oo || o (Gg) @

T
< Q) / B g 1 ora)t / (—E')dt
s €Js
t
< Q) / E2<q+%>¢'dt+c"§E(5). (6)

We choose ¢ such that 2(q + %) =g+ 1, thus we find ¢ = (p — 2)/p.
Using the Holder inequality and the Sobolev imbedding, we obtain

T
/ E1¢’ o(t)ug(u')dzdt
|u’|>1

m—1

/ Ei¢'o(t (/ |u|mdx)$ </u/|>1 lg(u/)|™T d;c) ; dt

m—1

T o
a+: = ou' a(uVdx
c/ B o ¢’ (t) (/u’|>1 u'g(u')d ) dt

< /Eﬁm’l )(—E') " dt.

IN

IN

Applying Young’s inequality, we obtain

T
/ E1¢’ o(t)ug(u') dzdt
s u/|>1

T - m 1 T
< C’(Q)sg”/ (360 (1) dt—I—C(Q)j/ (—E') dt
S em-t Js
(m—2)(p—1) T 1
< C(Q)eyum™ET »  (0) / BT dt + C(Q) ——EB(S). (7)
S 52"‘7
Set g9 = % Choosing ¢ and ¢” small enough, we deduce from (4), (6) and
E() ™
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(7) that

i n=2)(p=1)

T
/ E(t)1+q¢/q+1+clq+%+% —|—C”E(S)+C o B(S)
S

iy m=2)(p—1)

c"a + C“H-%—% +C p(m—1)
< q
< ( E 0y ) E(0)1E(S)

where C,C’,C",C"",C""" are different positive constants independent of E(0). Hence,
we deduce from Lemma 3 that

1/q t
B(t) < (1 - q) (cra+ crrtinh oy ot/ ( / o(s) ds>
q 0

—1/q
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