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Abstract
Based on the Perron complement P (A=A[�]) and generalized Perron comple-

ment Pt(A=A[�]) of a nonnegative irreducible matrix A, we derive a simple and
practical method that estimates the upper and lower bounds of the spectral ra-
dius of A in terms of norms of A[�] and its complements. Numerical examples
show that this approach improves some of the classical estimates.

1 Introduction

The spectral theory of nonnegative matrix has a wide range of applications to Oper-
ations Research, Quantitative Economics, Graph theory and Markov chain theory. In
1989, in connection with a divide and conquer algorithm for computing the stationary
distribution vector for a Markov chain, Meyer introduced, for an n � n nonnegative
irreducible matrix A, the notion of the Perron complement. From then on, many appli-
cations involving the Perron complement have been emerging in the literature. In 2002,
L.-Z. Lu introduced the generalized Perron complement. In this paper, we consider the
problem of estimating the bounds of spectral radius of nonnegative irreducible matrix
by using the concepts of Perron complement and the properties of matrix norm.

If A = (aij) is a nonnegative irreducible n � n matrix, then the Perron root �(A)
of A satis�es the classical inequalities of Frobenius [1, 2]:

min
i
ri(A) = r(A) 6 �(A) 6 R(A) = max

i
ri(A); (1)

where ri(A) =
Pn

j=1 aij (i = 1; 2; :::; n) :

In addition, a lot of estimates of �(A) had been derived by Ledermann [6], Os-
trowski [7], Brauer [8] and other authors. Though these estimates have improved the
inequality (1) to a certain degree, many of them are very complicated. In order to
introduce a simple method of estimation, we give the following notations:

For an arbitrary matrix C = (cij) 2 Rm�n, let k C k1= max
1�i�m

nP
j=1

j cij j, and k � k

be a consistent matrix norm, and we know that

k aC k= jaj� k C k; k C +D k�k C k + k D k; (2)
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where a 2 R, D 2 Rm�n.
Let � and � be nonempty ordered subsets of hni := f1; 2; :::; ng, both of strictly

increasing integers and � = hni n �. For an n � n matrix A, A[�; �] will denote the
submatrix of A whose rows and columns are determined by � and � respectively. In the
special case that � = �, A[�] will be used to denote A[�; �], the principal submatrix
of A corresponding to �.

DEFINITION 1.1 ([3, 4]). Let A be a nonnegative irreducible matrix of order n
with the spectral radius �(A), then the Perron complement of A[�] in A is de�ned as

P (A=A[�]) = A[�] +A[�; �](�(A)I �A[�])�1A[�; �];

and the generalized Perron complement of A[�] in A is de�ned as

Pt(A=A[�]) = A[�] +A[�; �](tI �A[�])�1A[�; �];

where t > �(A[�]):

LEMMA 1.1 ([1]). If k A k< 1, then I �A is nonsingular, and the inequality

k (I �A)�1 k� 1

1� k A k

holds.

LEMMA 1.2 ([3]). If A is a nonnegative irreducible matrix with the spectral radius
�(A), then the Perron complement P (A=A[�]) is also a nonnegative irreducible matrix,
and the spectral radius of P (A=A[�]) is equivalent to �(A).

LEMMA 1.3 ([1]). Let A be an n� n nonnegative irreducible matrix . Then A has
a positive real eigenvalue equal to its spectral radius; To �(A) there corresponds an
eigenvector x > 0; And �(A) is a simple eigenvalue of A .

LEMMA 1.4 ([4]). If A is a nonnegative irreducible matrix with the spectral radius
�(A), then for any t > �(A[�]), Pt(A=A[�]) is also a nonnegative irreducible matrix
and
(1) if t = �(A), then �(Pt(A=A[�])) = �(A);
(2) �(Pt(A=A[�])) is a strictly decreasing function of t.

2 Conclusions

For brevity in our discussion, we adopt the following notations: if A 2 Rn�n, � � hni,
� = hni n �, then

A[�] = A� ; A[�; �] = A�� ; A[�; �] = A�� ; A[�] = A� :

We may assume that A =
�
A� A��
A�� A�

�
:



Z. M. Yang 69

THEOREM 2.1. Let A be a nonnegative irreducible matrix. If �(A) >k A� k, then
we have

�(A) � 1

2

h �
k A� k + k A� k

�
+

q�
k A� k � k A� k

�2
+ 4 k A�� k � k A�� k

i
: (3)

PROOF. By Lemmas 1.2 and 1.3, we know that �(A) is an eigenvalue of Perron
complement P (A=A�), and there exists a vector x > 0 such that

P (A=A�)x = [A� +A��(�(A)I �A�)�1A�� ]x = �(A)x;

By (2), it follows that

�(A)� k x k�
h
k A� k +k A�� k � k (�(A)I �A�)�1 k � k A�� k

i
� k x k (4)

Since �(A) >k A� k, by Lemma 1.1 we know that �(A)I �A� is nonsingular, and

k (�(A)I �A�)�1 k =
1

�(A)




(I � 1

�(A)
A�)

�1





� 1

�(A)
� 1

1� 1
�(A) � k A� k

=
1

�(A)� k A� k
:

Since kx k > 0, the inequality (4) will be

�(A) �k A� k +
k A�� k � k A�� k
�(A)� k A� k

Simplifying it, we obtain

�2(A)�
�
k A� k + k A� k

�
�(A) +

�
k A� k � k A� k � k A�� k � k A�� k

�
� 0:

So we have

�(A) � 1

2

h �
k A� k + k A� k

�
+

q�
k A� k � k A� k

�2
+ 4 k A�� k � k A�� k

i
:

This completes the proof.

COROLLARY. Let A be a nonnegative irreducible matrix and

t1 =
1

2

h �
k A� k + k A� k

�
+

q�
k A� k � k A� k

�2
+ 4 k A�� k � k A�� k

i
: (5)

if �(A) >k A� k, then �(A) > �(Pt1(A=A�)).
PROOF. By Theorem 2.1 we know that �(A) < t1, so according to Lemma 1.4 we

obtain
�(A) = �(P�(A)(A=A�)) > �(Pt1(A=A�)):

Integrating the above two conclusions we now know that �(A) satis�es

�(Pt1(A=A�)) < �(A) < t1 ;

where t1 is just given as in (5).
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3 Numerical Examples

In this section, we provide several examples.

EXAMPLE 3.1. Consider the matrix A =

0@1 1 2
2 3 3
4 1 1

1A.
Let � = f1g. Then � = f2; 3g and

A� = 1; A� =

�
3 3
1 1

�
; A�� =

�
2
4

�
; A�� = (1; 2):

Let k � k be k � k1. Then it is clear that

k A� k1= 1 ; k A� k1= 6 ; k A�� k1= 4 ; k A�� k1= 3 :

So by inequality (3), we will obtain an upper bound of �(A), that is, �(A) � 1

2
(7 +

p
73) = 7:7720:
In addition, when � = f1g, the generalized Perron complement of A� will be

Pt(A=A�) = A� +A��(tI �A�)�1A�� =
�
3 3
1 1

�
+

�
2 4
4 8

�
1

t� 1 :

According to Theorem 2.1, we know that t1 = 7:7720. So we have

�(A) > �(Pt1(A=A�)) = 5:1923:

Similarly, we can get the upper bounds t1 and lower bounds �(Pt1(A=A�)) of �(A)
with di¤erent � listed as in Table 1.

Table 1:

� �(Pt1(A=A�)) t1 F-Bound L-Bound O-Bound B-Bound

{1} 5.1923 7.7720 8.0000 7.8661 7.6547 7.4642

{2} 5.3529 6.4495 _ _ _ _
{3} 5.2054 7.3589 �(A) �(A) �(A) �(A)

{1,2} 3.7198 7.3589 _ _ _ _
{1,3} 4.9933 6.4495 4.0000 4.1547 4.5275 4.8284

{2,3} 3.3100 7.7720

Here F-Bound, L-Bound, O-Bound and B-Bound denote the Frobenius�, Leder-
mann�s, Ostrowski�s and Brauer�s bounds respectively (See [5]).
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From the table we see that the bounds obtained by our method especially under the
case of � = f2g are much better than those bounds obtained by other methods (in fact,
�(A) = 5:74165738 � � � ). And for other values of �, such as � = f1; 2g and � = f2; 3g,
though the upper bounds have been improved to a certain degree, the lower bounds
are far from �(A). In fact, as for our algorithms introduced here, the rows which have
the maximal row sum and the minimal row sum play a decisive role. In general, if the
minimal row sum is close to the maximal row sum, we can take the row which has the
maximal row sum as �; otherwise, if the minimal row sum is much smaller than the
maximal row sum, we take the row which has the minimal row sum as �.

EXAMPLE 3.2. Consider the matrix A =

0BBBBBBBBBB@

1 1 1 1 1 1

1 2 2 2 2 2

1 2 3 3 3 3

1 2 3 4 4 4

1 2 3 4 5 5

1 2 3 4 5 6

1CCCCCCCCCCA
.

We list the upper bounds t1 and lower bounds �(Pt1(A=A�)) of �(A) obtained by
di¤erent � as in Table 2.

Table 2:

� �(Pt1(A=A�)) t1 F-Bound L-Bound O-Bound B-Bound

{1} 17.1608 20.2596 21.0000 20.9759 20.5000 20.2596

{6} 16.1632 20.2596 _ _ _ _
{1,2} 17.0279 19.4582 �(A) �(A) �(A) �(A)

{1,2,3} 16.7430 19.1168 _ _ _ _
{4,5,6} 12.8470 19.1168 6.0000 6.0247 7 7.8990

We see from Table 2 that the bounds obtained for � = f1g or � = f1; 2g taken from
the row having the minimal row sum are better than those for � = f6g taken from the
row having the maximal row sum. Finally, we have 17:1608 � �(A) � 19:1168 (�(A) =
17:2069). This result is better than other estimates given by Frobenius, Ledermann,
Ostrowski and Brauer. Despite that, the upper bound is still not better than the result
obtained by Lu [4], that is, 15:6944 � �(A) � 18:0498, where the upper bound is the
twice iteration of the Brauer�s upper bound. As we can see from Table 2 that it is
di¢ cult to get a better upper bound just by selecting a proper �, but if we continue to
apply the method of this paper to the Perron complements Pt1(A=A�), we will obtain



72 Estimation of Spectral Radius of Nonnegative Irreducible Matrices

some closer upper bounds of �(A). For example, when we take � = f1; 2g, we have

Pt1(A=A�) =

0BBB@
3:2966 3:2966 3:2966 3:2966

3:2966 4:2966 4:2966 4:2966

3:2966 4:2966 5:2966 5:2966

3:2966 4:2966 5:2966 6:2966

1CCCA 4
= B:

Then, we take hn0i := f1; 2; 3; 4g; �0 = f1g, �0 = hn0i n �0 = f2; 3; 4g.
By (5), we obtain t1 � 17:4455, where we replace A;�; � with B;�0; �0 respectively.

Thus we have
17:1608 � �(A) � 17:4455:

These are very good lower and upper bounds for �(A). It shows that Lu�s result
has been greatly improved.

The method derived here may provide better estimates for the bounds of the spectral
radius, and is simple and practical.
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