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Abstract

In this paper the Adomian decomposition method is used to find an analytic
solution for nonlinear reaction system of Raman type. In this approach, the
solutions are found in the form of a convergent power series with easily computed
components. Convergence analysis of Adomian series solution for a class of these
type of nonlinear ODEs is discussed and a numerical example is presented.

1 Introduction

Raman equations usually account for a large number of effects but the major inter-
actions are the attenuation, and the power transfer between waves. The steady-state
Raman amplified system can be described by a set of coupled nonlinear equations (see

[1])

i—1 m
dP; Vi
j=1 j=i+1 7
with initial condition
P(0) = [P1(0), ..., Pn(0)]" (2)
— gr(vi—vi) — gr(vi=vy) P
and where C;; = gI‘Tfvaji = glﬂl{ﬁ and o; >0,i=1,...,m.

The nonlinear term is of the type N(P;, P;) = f(P;,P;) = P;P; has Adomian
polynomials representation f(P;, P;) = > ° A, where the formula of A, is given by
(6).

The =+ signs stand for forward and backward waves, respectively. P;, v; and «; are
the power, frequency and attenuation coefficient of the i-th wave, respectively. A¢r¢ is
the optical fibre effective area, the factor I' accounts the polarization random effects.
gr(vj —v;) is the Raman gain coefficient from wave j to wave i. The frequencies v; are
numbered in decreasing order (i = 1,2,...,m). In optical fiber, due to the amorphous
nature of Silica, the Raman gain coefficient presents a fairly broad shape.

The Adomian decomposition method (ADM) has been used to solve effectively
and accurately a large set of differential equations (see, for instance [2]) as linear or
nonlinear, ordinary or partial, deterministic or stochastic. In this method, the solution
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is presented as the sum of an infinite series, rapidly converging to an accurate solution.
In particular, it is quite effective for dealing with nonlinear problems and do not involve
linearization of the problem. Evans and Raslan [3] applied a decomposition method
for solving delay differential equation. In [4], Gu and Li introduced a modified ADM
to solve a class of systems of nonlinear differential equations. The method can be
mechanized in Maple and a procedure is written to solve the approximate analytic
solution of the systems. Approximate analytic solution for nonlinear reaction diffusion
system of Lotka-Volterra type were obtained by Alabdullatif, Abdusalam and Fahmy
[5]. Ibrahim L. El-Kalla [6] introduces a new formula for Adomian polynomials. Based
on this new formula, error analysis of Adomian series solution for a class of nonlinear
differential equations is discussed. Afrouzi and Khademloo applied the ADM to a
quasilinear parabolic equation. In general, the large majority of papers about ADM,
just applied the method without studding its convergence, some exception is [6].

In the scope of these type of nonlinear ODEs models (1), the main contribution of
this paper is to use the Adomian decomposition method to solve the Raman propaga-
tion equations. The solutions are found in the form of a convergent power series and
the convergence analysis of Adomain series solution for a class of these type of ODEs
is discussed.

The paper is organized as follows: In section 2, we review the Adomian decompo-
sition method. In section 3, we present the analysis of the Adomian decomposition
method applied to nonlinear coupled system. Section 4 is devoted to the study the
convergence of the method and estimate the maximum absolute error of the truncated
series. Finally, in section 5 a numerical example is presented.

2 A Brief Review of ADM

For the purpose of illustration of the methodology to the proposed method, using ADM,
we consider the general form of equation,

Lu+ Gu+ Nu =0, (3)

where v is the unknown function, L represents a linear operator which is easily invert-
ible, G is a linear operator and Nwu represents the nonlinear term. We assume that
the operator L is invertible and it can be taken as the define integral with respect to z
from zy to z, i.e., L71 = f;()dé Applying the inverse operator L~! to both sides of
(3) and using the initial condition, i.e., u(0) = g(z) we find

u=g— L' [Gu+ Nul. (4)

The nonlinear term Nwu can be decomposed by an infinite series of polynomials given
by

NU:ZAn(uo,ul,...,un), (5)

n=0
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where A, (ug,u1,...,u,) are the appropriate Adomian’s polynomials and are defined
by
nlA, = a [f (i A’%ﬁ)] ,n>0. (6)
d\" prs o -

The ADM assumes a series that the unknown function u(z) can be expressed by a
infinite series of the form

u(z) =Y un(2). (7)

n=0

Taking into account (5) and substituting (7) into (4), we obtain

o0 o0 o0
Zun(z):g—L_l GZun—FZAn
n=0 n=0 n=0

Identifying the zero component wug, the remaining components can be determined
by using recurrence relation, i.e.,

(8)

uo = 9(2), Uni1 =L G(u,) + A,], n>0. 9)

The scheme (9) can easily determine the components u,,(z). It is in principle, possible to
calculate more components in the decomposition series to enhance the approximation.
Consequently, we can recursively determine every term of the series >~ u,(z) and
hence the solution u(z) is readily obtained, i.e., using the above recursive relationship,
we construct the solutions u(z) as u(z) = lim, .o S,, where S, = Y% (u;(z) for
n > 0.

It is interesting to note that, we obtain the solution by using the initial condition
only.

3 The Analysis of the ADM

For simplicity, we are interested to deal with Adomian decomposition solution associ-
ated with the operator L™1.

Following Adomian decomposition method [2], the system (1) can be written in an
operator form as

i—1 m
Vs

=1 j=it1 7

where L = %.
Operating with L™! on both sides of (10) and using the initial conditions (2), we
get

i—1 m
”
P =P(0)+ L' |~ P+ Y CyyN(Pj,P)— Y V%CﬁN(Pj,Pi) . (1)
j=1 j=i+1 7
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The Adomian decomposition method assumes a series solution of the unknown
functions P;(z), ¢=1,...,m, are given by

2) =Y Pin(2). (12)

Substituting (12) into (11) and taking into account that

o0

N(F;,P) = Au(P;P), (13)
n=0
we obtain
o) 00 1—1 00 m U 0o
D Pin(2) = PO0) + (=i D P+ D Ciyy An— D ECi Y A
n=0 n=0 j=1 n=0 Jj=i+1 J n=0

Given the components P; o, the remaining components P; ,,11, n > 0, can be com-
pletely determined using the previous terms, i.e.,

i—1 m
U
1 )
Pipy1 =1L —a; P + E Ci;An — E ;CjiAn
j=1 j=i+1 J

Hence, the series solutions is entirely evaluated.
In the following lemma we obtain an explicit formula for A,.

LEMMA 1. If the polynomials A,, for N(P;, P;) are given by

A, = [‘W (ZA’“ ]k,ZA sz> (14)
A=0
then .
An - ZP*,kPi,n—k'- (15)
k=0

PROOF. First, we observe that

1 -dn n n
| <ZA’€Pj,k,ZA’“Pi,k>

1
ol d,\” (Z)‘k JkZ/\ PM)
- L di( NZA szHPJZA Pij+- +A"Pj,nZA’“Pi,k>

k=0 k=0

1
= ﬁ[n!P]}Oan + (TL + 1)TL s 2>\Pj,1pi,n + n!Pj71Pz-7n_1
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+(n+2)(n+1)n--3\2Pj P, + (n+1)n---2\PjoP; 1
+’n!Pj)2PZ"n,2 + -+ (271)(2’[’1, — 1) R (n + 1))\nPj)nPi7n —+ .-
+(?’L + 1)n(n — ].) s 2)\Pj¢npi,1 + TL!Pj’nPZ"()}.

Hence, taking into account (14) and the previous relation, we obtain

1 d" n n
Ay = —|owN (ZA’CPJ,,C,ZA’CPLQ
’ k=0 k=0 A=0

= PjoPin+Pj1Pin1+Pj2Pino+- -+ PPy,

which is our result.

4 Convergence Analysis

In this section a condition that guarantees the existence of a unique solution is intro-
duced in Proposition 1, the convergence of the series solution (11) is proved in Propo-
sition 2, and the maximum absolute error of the truncated series (11) is estimated in
Proposition 3.

Denote by Y = (CII],]|.]]) the Banach space of all continuous functions on I =
[0,7] C R with the norm ||P| = >I" | max.c; |P;|, and where ||P;|| = max,c;|Pi(2)]
fori=1,...,m.

In the following Proposition, we discuss the existence and uniqueness of the solution
of the problem (2) and (11).

PROPOSITION 1. Suppose that the following conditions hold:

(H1) There is a constant M5 > 0 such that ||F|| < £Ms for all i = 1,...,m (which
makes sense since signals are bounded).

(H2) Let I =[0,7] C R, My be the smallest positive real number that satisfies | Py (0) —
Qr(0)| < Mpmax,cr |Pr(z) — Qk(2)|, and

k—1 m v
k
MGZ max Ozk7M5 E ij,Mg) E — Uk
1<k<m . . Vj
Jj=1 Jj=k+1

such that if v = m(My + M¢T) then 0 < v < 1.

Then the problem (2) and (11) has a unique solution.
PROOF. First, note that hypothesis H; implies that

|PiPr — Q;Qrll = ||PjPx — PrQ; + PrQj — Q; Qx|
1Pe (P — Q) + Qi (Pr — Q)|
1Pell 1125 — Qjll + 1Q;l [ P — Qkll

1 1
§M5||Pj - Qjll + §M5|\Pk — Qrll < Ms|| P, — Q|-

IA

IN
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We define a mapping F : Y — Y, where P — FP(z) and FP(z) = (F1Pi(2),...,
F,, P, (z)) with

1—1 m
_ Z Z Vi
szz(z) = PZ(O) + L 1 70&,'PZ‘ + - OiijPi — o ZCJ@PJPZ
Jj= J=1

Here, properties such as continuity will be understood in a componentwise manner.
Let P,Q €Y. We have

m
|FP-FQ| = ;Tg{ |FiP; — F;Q;| < m max |Fi Pr(2) — FrQr(2)]
. k—1 m Vi 1
= mmax|| Pi(0)+ L™ | —axPr + ;ijpjpk - j;l chkpjpk
. k—1 m Vi |
— | Qe(0) + L7 | —axQi + D CryQiQr — Y —=CinQi Qs

j=1 j=k+1 7
m|Pk(0) — Qk(O)‘ + mI?Ea}( |L71 [7Ozkpk + OthkH

IN

E

1 k—1
—|—mr£1é1;< L Crj Pi Py — ZijQij
j=1 j=1

+m max L1 —j;rl %Cjkpjpk +j§rl %Cijij
m| Py(0) = Qx(0)] + may max L~ Qy, — Py

k—1
+mZ Ch; max L7YP; Py — Q;Qx|

j=1

IN

+mj§rl %Cjk max L1Q; Qk — P Pyl

m| Px(0) — Qx(0)] + may max LQk — P
k—1

+mMs; ; Cij max L7 Py — Qi

IN

m
Vi _
+mMs E —Cjk max L 1|Pk — le
X Vj zel
Jj=k+1

IN

m|Py(0) — Qx(0)| + may, max |Qr — Py max/ dz
zel zel Jq



56 Adomian Series Solutions of Systems of Raman Type

k—1

+mMs Z Clj max | P, — Qx| max/ dz
0

el
]_

m z
Vi ~
+mMs E —Cjmax | P, — Q| max dz
i Vj zel zel Jgo
j=k+1

< mIPL(O) = Qu(O)] + mMo max | Pu(2) ~ Qu(o) ma [z
= m|F(0) = Qu(0)] + mMe max |Py(2) — Qu ()T

< m(Mo+ MeT )maX|Pk( ) — Qi(2)]

< m(Mo + MgT)|| Py — Q||

Y Pr — Qrll-

Under the condition 0 < v < 1 the mapping F' is a contraction. Therefore, by the
Banach fixed-point theorem, there exists a unique solution to problem (2) and (11),
which completes the proof.

PROPOSITION 2. Suppose that hypotheses (H;)-(Hz) hold together with:

(Hs) Let My = maxi<p<m {ak,zj 1O Vf;c-k} and 5 = M;T such that
0<y<l.

Then the series solution (12) of problem (2) and (11), using ADM, converges.

PROOF. Let S,, and S, be arbitrary partial sums with n > ¢q. We are going to
prove that {S,} is a Cauchy sequence in Y. Indeed,

n

S, — S = max |5, — 5,/ = max Py
| al 2€(0,T) | dl = 2€(0,7) :Z:qﬂ
(k=1)—1
= max Z L™ |~ 1Pig—1+ Z Cr—1jAk—1
z€[0,T] kg1 =

Vi
- Z u ‘1Cjk—1Ak—1
j=(k—1)+1 7

1 Uk

< Zreng)% ZL _akplk+ZCkJAk_ Z 7] ik Ak
j=k+1
n—1 n—1 n—1

< M; max |-L7'Y P +L7'y A, —L 1Y A4
- 7ze[O,T} Z ok Z g Z ’
< M, max |—L7! P;
< Mr max > Pk
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n—1 2
< M; max P; ;.| max dz
- 7zE[O,T] ;::q ok zel/o
§ M7T max] |Sn71 - Sq71|

z€[0,T
< AlSn—1 = Sgll-

If we consider n = r + 1 and ¢ = r then, we have ||S;41 — Sr|| < S, — Sr—1]] <
2(|Sr—1 — Sp_a|| < -+ <A"||S1 — Sp||. From the triangle inequality, we obtain

10 = Sall < [1Sg41 = Sll + 1g12 = Sl + -+ 15 — Suc
< (AT A+ (IS0 Sol
< AA+F+F+ . AT S = S
<

B 1 _ ,7’”—(]
ok (1—’_Y> [[P1]]-

Since 0 <4 < 1 we have 1 — 4"~ 9 < 1, and consequently
54
15, = 5, < 2= 1A (16)

Since || P1|| < oo we have ||S,, — Sy]| — 0 as ¢ — oco. Hence, we conclude that {S,,} is
a Cauchy sequence in Y. So the series converges and the proof is complete.

To end this subsection, we estimate the maximum absolute error of the truncated
series (12).

PROPOSITION 3. The maximum absolute truncation error of the series solution
(12) of problem (2) and (11) is estimated by

~4
<1 max |Pa(2), k=1,...,m.

—1—7 z€0,1)

max
z€[0,T]

Pk(z) - Z Pkﬂ(z)
=0

PROOF. From the previous proposition, we have ||.S,,—S,|| < % max_co,7] | Pr,1(2)].
For each z € [0,T], we have S,,(z) — Pi(z) with n — oo, so we have

and the maximum absolute truncation error in the interval I is estimated to be

< max

max
~ ozelo) 1 =%

Py 17
masx [Pea(2)], (17)

Pr(z) — Z Py i(2)
i=0

for k =1,...,m. This completes the proof.
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5 The Raman System with One Pump and Two Sig-
nals

In this section, we compute a numerical example to see the rate of convergence of
the proposed method. We present a table with the error between the two consecutive
iteration of the solution at given instants.

For the special case of an amplifier composed by a forward single pump and two
propagating signals, the solution is expressed as follows:

Pi(z) = Pi(0) + L7" |~y P — LOnN(P, Ps) — %031N(P1,P3)} )
Py(2) = Py(0) + L' | ~azPy + Coy N(Py, Po) — 22Csp K (P, Pg)} 7 (18)
P3(Z) = P3(0) + L1t [—0{3P3 + C31N(P1, P3) + C32N(P2, Pg)} .

The Adomian decomposition method assumes a series solution of the unknown func-
tions Py(z), Py(z) and Ps(z) are given by

Pi(z) =Y Pin(z), Pa2)=) Pan(z), Ps(z) =) Pin(2). (19)
n=0 n=0 n=0

Substituting (19) with their initial conditions into (18) yields

o0 o0
v v
Y Piu(z) = P0)+L7" =1 Y Piy— —CuN(P,P) — —C51N(Py, P3)|
n=0 I n=0 V2 V3
o] r 0o ”
sz,n(z) = P0)+L7! —Oézzpz,n-l-Cle(Pl,PQ)— 72032N(P27P3) )
n=0 L n=0
Y Psa(z) = Ps(0)+ L' |—as Y Py, +CaiN(Pr, Ps) + CaaN(Py, Py) |,
n=0 L n=0

where the functions N(Py, P2), N(Pi, P3) and N(Ps, P3) are related to the nonlinear
terms, and making use of (13) and (14), the nonlinear terms can be expressed in terms
of Adomian polynomials as follows:

o0 o0 o0

N(Pi,Py) =Y Dy(P1,Py), N(P1,P3) =Y Bn(P1,Ps), N(Py, Ps) = > _ En(Py, Ps),
n=0 n=0 n=0

where
Dn = Zpl,kPQ,nfkﬂ Bn = Zpl’kpg’nfk’ and En = ZP2’kP3’nik.
k=0 k=0 k=0

Identifying the zeroth components of P; o, P20 and Ps, the remaining components
Pi i1, Popy1 and P31, n > 0 are obtained recursively by

1 Vi V1
Pipy1 = L {—alan - —CuD, — C3an] ,
Va2 V3
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St z=10 z=30 z2=60 z=100
n=9 | 7.24065412 x10~° | 3.62767771 x10~° | 1.57307374x10~° | 4.749965358 x10—°
n =29 | 5.98448706x10~5 | 3.21863535 x10~5 | 1.47838597x10~°% | 4.650101884 %10~
n =49 | 4.88886873 x1075 | 2.84241024 x10~5 | 1.38763283x10~% | 4.551655496x10~6

S2 z=10 z=30 2=60 z=100
n=9 | 3.37306181 x10~° | 1.69441802 x10~° | 7.36352147 x10~° | 2.22692930 x10~°
n =29 | 2.79583822x10~5 | 1.50615797 x10~5 | 6.92718129x10~6 2.18087075 x10—6
n=49 | 2.29127375x10~° | 1.33276366 x10~5 | 6.50867685x106 2.13545488 %106

S3 z=10 z=30 2=60 z=100
n=29 | 3.53614661 x10~° | 1.76694509 x10~° | 7.64510894 x10—% [ 2.30479348 x10~°
n=29 | 2.91478046x10~5 | 1.56493360 x10~5 | 7.17806355x10~6 2.25557842 x10—6
n =49 | 2.37393882 x10~5 | 1.36936673x10~° | 6.73072054x10~% | 2.20707260 x10—6

Table 1: 1 —error of SL, S2 and S? for n € {9,29,49} .
—1 V3
Py = L7 =Py +Co1 Dy, — 7032En )
3
—1
P11 = L7 [—a3Ps, + Cs1B, + CsE,).

Substituting the above expressions in (19), it gives the exact solution in the closed
form.
In Table 1, we present the [;-norm of the difference of

Sp = IPint1 = Pinl, Sh=IPont1 — Ponl, Sy = [Pant1 — Panl for n € {9,29,49},
with the following data

Pig=08, Poo=1x10"3 P39 = Pay;

v = 2.053373 x 10T Hz, vy = 1.960 x 10T Hz, v =1.958 x 1014THz;

Ch2 = 0.2648178032 x 1073, C15 = 0.2736146032 x 103, Ca3 = 0.002859233333 x 1072,
al = 5.419400495579674 x 10~° (a pump),

a2 = 4.947848510246372 x 107> (a signal), a3 = 4.932588910154262 x 1075 (a signal),

which can be found in [8].
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