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Abstract

Some oscillation criteria are established for second-order neutral impulsive
dynamic equation with or without forcing term.

1 Introduction

In this paper, we are interested in obtaining oscillation criteria for second-order impul-
sive dynamic equations on time scales. We consider the following systems

(x(t) + px(t� �))44 + q(t)x(�(t)) = 0; t 2 JT := [t0; 1) \ T; t 6= tk; k = 1; 2; :::;

x(t+k ) = ax(tk); x
4(t+k ) = bx

4(tk); k = 1; 2; :::; (1)

and

x44(t) + q(t)x(�(t)) = e(t); t 2 JT := [t0; 1) \ T; t 6= tk; k = 1; 2; :::;

x(t+k ) = akx(tk); x
4(t+k ) = bkx

4(tk); k = 1; 2; :::; (2)

where T is a unbounded-above time scale, with tk 2 T; 0 � t0 < t1 < t2 < � � � <
tk < � � � ; lim

k!1
tk = 1 and y(t+k ) = lim

h!0+
y(tk + h); y

4(t+k ) = lim
h!0+

y4(tk + h);

which represent right limits of y(t); y4(t) at t = tk in the sense of time scales, and in
addition, if tk is right scattered, then y(t

+
k ) = y(tk); y

4(t+k ) = y
4(tk). We can de�ne

y(t�k ); y
4(t�k ) similar to the above de�nitions.

We assume that 0 � p < 1; � > 0, q(t) 2 Crd(T;R+); a > 0; b > 0; ak > 0; bk >
0; e(t) 2 Crd(T;R), R+ = fxjx > 0g:
DEFINITION 1. A function x is said to be a solution of (1), if it satis�es

(x(t) + px(t� �))44 + q(t)x(�(t)) = 0

a.e. on JTnftkg; k = 1; 2; :::; and for each k = 1; 2; :::; x satis�es the impulsive condi-
tions x(t+k ) = ax(tk); x

4(t+k ) = bx
4(tk):
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34 Oscillation Criteria for Impulsive Dynamic Equations

We can de�ne the solution of (2) similar to De�nition 1.
Recently, many results have been obtained on the oscillation and nonoscillation

of dynamic equations on time scales, and we refer the reader to papers [3, 6, 7, 8]
and references cited therein. Impulsive dynamic equations on time scales have been
investigated by Agarwal et al. [1], Benchohra et al. [4] and so forth. Benchohra et al.
[4] considered the existence of extremal solutions for a class of second order impulsive
dynamic equations on time scales.
The oscillation of impulsive di¤erential equations and impulsive di¤erence equations

has been investigated by many authors and good results were obtained (see [5, 10] etc.
and the references cited therein). But fewer papers are on the oscillation of impulsive
dynamic equations on time scales.
For example, Huang [9] considered the equation

y44(t) + f(t; y�(t)) = 0; t 2 JT := [0; 1) \ T; t 6= tk; k = 1; 2; :::;

y(t+k ) = gk(y(tk)); y
4(t+k ) = hk(y

4(tk)); k = 1; 2; :::;

y(t+0 ) = y(t0); y
4(t+0 ) = y

4(t0):

Using Riccati transformation techniques, they obtain su¢ cient conditions for oscillation
of all solutions.
In the following, we always assume the solutions of (1)(or (2)) exist in JT. To the

best of our knowledge, the question of the oscillation for second order neutral impulsive
dynamic equations on time scales has not been yet considered.

2 Main Results

We will brie�y recall some basic de�nitions from the time scales calculus that we will
use in the sequel. For more details see [2].
On any time scale T, we de�ne the forward and backward jump operators by

�(t) = inffs 2 T; s > tg; �(t) = supfs 2 T; s < tg;

where inf ? = supT; sup? = inf T; and ? denotes the empty set. A nonmaximal
element t 2 T is called right-dense if �(t) = t and right-scattered if �(t) > t: A
nonminimal element t 2 T is said to be left-dense if �(t) = t and left-scattered if
�(t) < t: The graininess � of the time scale T is de�ned by �(t) = �(t)� t:
A function f : T ! R is called rd-continuous provided it is continuous at right-

dense points in T and its left-sided limits exist(�nite) at left-dense points in T. The
set of rd-continuous functions f : T! R will be denoted by Crd(T;R):
LEMMA 1 ([12]). Assume that m 2 PC1[T;R] and

m4(t) � p(t)m(t) + q(t); t 2 JT := [0;1) \ T; t 6= tk; k = 1; 2; :::;

m(t+k ) � dkm(t
�
k ) + bk; k = 1; 2; :::;
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then for t � t0;

m(t) � m(t0)
Y

t0<tk<t

dkep(t; t0)+
X

t0<tk<t

(
Y

tk<tj<t

djep(t; tk))bk+

Z t

t0

Y
s<tk<t

dkep(t; �(s))q(s)�s;

where PC = fy : JT ! R which is rd-continuous except at tk; k = 1; 2; :::, for which
y(t�k ); y(t

+
k ); y

4(t�k ); y
4(t+k ) exist with y(t

�
k ) = y(tk); y

4(t�k ) = y
4(tk)g.

We �rst consider the Equation (1). Let u(t) = x(t) + px(t� �):
LEMMA 2. Suppose that x(t) > 0; t � T � t0; is a solution of (1), tk+1 � tk = � .

If Z 1

tj

Y
tj<tk<s

b

a
4s =1; (3)

holds for some tj � T , then u4(t+k ) � 0; u4(t) � 0 for t 2 (tk; tk+1]T, where tk �
T; k = 1; 2; ::: :

PROOF. From u(t) = x(t) + px(t� �), we get

u(t+k ) = x(t
+
k ) + px(t

+
k � �) = au(tk);

u4(t+k ) = x
4(t+k ) + px

4(t+k � �) = bu
4(tk):

We �rst prove that u4(tk) � 0; tk � T; k = 1; 2; ::: : If not, then there exists a
j 2 N such that u4(tj) < 0; tj � T , u4(t+j ) = bu4(tj) < 0: For t 2 (tj+i�1; tj+i]T;
i = 1; 2; :::; we get

u44(t) = �q(t)x(�(t)) � 0:
So u4(tj+1) � u4(t+j ) = bu4(tj); u4(tj+2) � u4(t

+
j+1) = bu

4(tj+1) � b2u4(tj) < 0:
By induction, we obtain

u4(t) � u4(t+j+n�1) � bnu4(tj) , bn(��) < 0; t 2 (tj+n�1; tj+n]T:

So
u4(t) � ��

Y
tj�tk<t

b; u(t+k ) = au(tk):

Applying Lemma 1, we obtain for t > tj ,

u(t) � u(t+j )
Y

tj<tk<t

a� �
Z t

tj

Y
s<tk<t

a
Y

tj<tl<s

b4s

=
Y

tj<tk<t

a

24u(t+j )� � Z t

tj

Y
tj<tk<s

b

a
4s

35 :
We get a contradiction as t!1. Therefore, u4(tk) � 0; k = 1; 2; � � � . From u44(t) �
0; u4(t+k ) = bu

4(tk) � 0; we have u4(t) � 0. The proof of Lemma 2 is complete.
THEOREM 1. Suppose that (3) holds, tk+1 � tk = � ; a � 1; andZ 1

t0

Y
t0<tk<t

a

b
q(t)4t =1: (4)
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Then Eq.(1) is oscillatory.

PROOF. Suppose that Eq.(1) has a nonoscillatory solution x, without loss of gen-
erality, we assume that x > 0; t � T . From Lemma 2, we have

u44(t) + q(t)x(�(t)) = 0; t 2 JT; t 6= tk; k = 1; 2; :::;

u(t+k ) = au(tk); u
4(t+k ) = bu

4(tk); k = 1; 2; :::; (5)

and u4(t+k ) � 0; u4(t) � 0; t 2 (tk; tk+1]T; tk � T; k = 1; 2; ::: : Further we know

u44(t) + q(t)(1� p)u(�(t)) � 0; t 2 JT; t 6= tk; k = 1; 2; ::: :

Let w(t) = u4(t)
u(t) , then

w4(t) =
u44(t)u(t)� (u4(t))2

u(t)u(�(t))
� �q(t)(1� p); t 2 JT; t 6= tk; k = 1; 2; :::;

w(t+k ) =
u4(t+k )

u(t+k )
=
b

a
w(tk):

Applying Lemma 1, we get

w(t) � w(t0)
Y

t0<tk<t

b

a
� (1� p)

Z t

t0

Y
s<tk<t

b

a
q(s)4s

=
Y

t0<tk<t

b

a

"
w(t0)� (1� p)

Z t

t0

Y
t0<tk<s

a

b
q(s)4s

#
:

In view of (4), we get a contradiction as t!1. The proof is complete.
Next, we discuss the Eq.(2). For Eq.(2), we assume that there exists a function z(t),

z(t) is 2-times 4-di¤erentiable, z44(t) = e(t); a:e:; there exist two constants p1; p2
and two sequences ft0ig; ft

00

i g; lim
i!1

t
0

i = lim
i!1

t
00

i = 1 such that z(t
0

i) = p1 � z(t) �

p2 = z(t
00

i ):
If Eq.(2) has an eventually positive solution x(t), let y(t) = x(t) � z(t) + p1, by

Eq.(2), we have

y44(t) + q(t)y(�(t)) � 0; t 2 JT ; t 6= tk; k = 1; 2; :::;

y(t+k ) = aky(tk) + ck; y
4(t+k ) = bky

4(tk) + ek; k = 1; 2; :::; (6)

where ck = (ak � 1)(z(tk)� p1); ek = (bk � 1)z4(tk):
If Eq.(2) has an eventually negative solution x(t), let y(t) = x(t) � z(t) + p2, by

Eq.(2), we have

y44(t) + q(t)y(�(t)) � 0; t 2 JT; t 6= tk; k = 1; 2; :::;

y(t+k ) = aky(tk) + dk; y
4(t+k ) = bky

4(tk) + ek; k = 1; 2; :::; (7)
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where dk = (ak � 1)(z(tk)� p2); ek = (bk � 1)z4(tk):
LEMMA 3. Suppose x(t) is an eventually positive solution of Eq.(2). If there exists

a constant k0, such that z4(tk) = 0; k � k0, and

(H1) (t1 � t0) +
b1
a1
(t2 � t1) + � � �+

b1b2 � � � bn
a1a2 � � � an

(tn+1 � tn) + � � � =1;

(H2)
jc1j
a1

+
jc2j
a1a2

+ � � �+ jcnj
a1a2 � � � an

+ � � � <1;

then for Eq.(6), y4(t+k ) > 0; y
4(t) > 0; t 2 (tk; tk+1]T; tk � T1 � tk0 :

The proof is similar to Lemma 2, so we omit it.

LEMMA 4. Suppose x(t) is an eventually positive solution of Eq.(2). If the con-
ditions (H1), (H2) hold, and there exists a k0, such that ak � 1; z4(tk) = 0; k � k0,
then for Eq.(6), y(t) > 0; t � T1 � tk0 :
PROOF. Without loss of generality, we assume that x(t) > 0; t � t0.
(I) If there exists a tj � tk0 such that y(t+j ) = ajy(tj) + cj � 0, by Lemma 3, we

have y4(t) > 0; t 2 (tj ; tj+1]T. So

y(tj+1) > y(t
+
j ) � 0; y(t

+
j+1) = aj+1y(tj+1) + cj+1 � aj+1y(tj+1):

By induction, there exists a T1 � tk0 ; such that y(t) > 0; t � T1.
(II) If all tj � tk0 we have y(t+j ) = ajy(tj)+ cj < 0, i.e., y(tj) =

y(t+j )�cj
aj

< 0. Since
y(t) is monotonically increasing in t 2 (tj ; tj+1]T, y(t) < y(tj+1) < 0: On the other
hand, in (tk; tk+1]T; tk � tk0 , we take a point t

0

n, then x(t
0

n) = y(t
0

n) + z(t
0

n) � p1 =
y(t

0

n) < 0; this contradicts x(t) > 0:
Summing up the above consideration, we have y(t) > 0; t � T1. The proof is

complete.

For x(t) which is an eventually negative solution of Eq.(2), we have similar results,
we omit them.

THEOREM 2. Suppose (H1) and (H2) hold, and there exists a constant k0 such
that ak � 1; z4(tk) = 0; k � k0; andZ t2

t1

q(t)4t+ a2
b2

Z t3

t2

q(t)4t+ � � �+ a2a3 � � � am
b2b3 � � � bm

Z tm+1

tm

q(t)4t+ � � � =1;

then Eq.(2) is oscillatory.

PROOF. Let x(t) be a nonoscillatory solution of Eq.(2). Without loss of generality,
we assume x(t) > 0. By Lemma 3 and Lemma 4, we get

y(t) > 0; y4(t) > 0; y44(t) < 0; t � T1 � tk0 :

Let v(t) = y4(t)
y(t) : Then

v4(t) � �q(t); t 2 JT; t 6= tk; k = 1; 2; :::; (8)
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v(t+k ) =
bky

4(tk)

aky(tk) + ck
<
bk
ak
v(tk):

Integrating (8), we have

v(t2) � v(t+1 )�
Z t2

t1

q(t)4t;

v(t3) � v(t+2 )�
Z t3

t2

q(t)4t

� b2
a2
v(t2)�

Z t3

t2

q(t)4t

� b2
a2
[v(t+1 )�

Z t2

t1

q(t)4t� a2
b2

Z t3

t2

q(t)4t]:

Applying induction, for any natural number m,

v(tm+1) �
b2b3 � � � bm
a2a3 � � � am

[v(t+1 )�
Z t2

t1

q(t)4t�a2
b2

Z t3

t2

q(t)4t�� � ��a2a3 � � � am
b2b3 � � � bm

Z tm+1

tm

q(t)4t]:

Let m ! 1, by the conditions of Theorem 2, we get a contradiction. The proof is
complete.

THEOREM 3. If the conditions (H1),(H2) hold, and there exists a constant k0 such
that ak � 1; z4(tk) = 0; k � k0, and

lim
t!1

Z t

t1

Y
t1<tk<s

ak
bk
q(s)4s =1;

then the Eq.(2) is oscillatory.

PROOF. Let x(t) be a positive solution of Eq.(2), similar to the proof of Theorem
2, we get

v4(t) � �q(t);

v(t+k ) <
bk
ak
v(tk):

By Lemma 1, we get

v(t) �
Y

t1<tk<t

bk
ak
[v(t+1 )�

Z t

t1

Y
t1<tk<s

ak
bk
q(s)4s]:

We get a contradiction as t!1. The proof is complete.
EXAMPLE 1. Consider the system

(x(t) +
1

2
x(t� 1))44 + t[t]+1x(�(t)) = 0; t 2 T = P 1

2 ;
1
2
; t 6= k + 1

3
; k = 0; 1; 2; :::;

x((k +
1

3
)+) = ax(k +

1

3
); k = 0; 1; 2; :::;
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x4((k +
1

3
)+) = 2ax4(k +

1

3
); k = 0; 1; 2; :::;

where a � 1; P 1
2 ;

1
2
=

1S
k=0

[k; k + 1
2 ]; tk+1 � tk = 1. It is easy to showZ 1

t1

Y
t1<tk<s

2a

a
4s >

Z 1

t1

4s =1;

Z 1

0

Y
0<tk<t

a

2a
q(t)4t =

Z 1
2

0

1

2
t4t+

Z 3
2

1

t2

22
4t+ � � �+

Z k+ 1
2

k

tk+1

2k+1
4t+ � � � =1;

by Theorem 1, we know our system is oscillatory.

EXAMPLE 2. Consider the system

x44(t) + t2x(�(t)) = sin t; t 2 T :=
1[
k=0

[k�; k� +
3�

4
]; t 6= k� + �

2
; k = 0; 1; 2; :::;

x((k� +
�

2
)+) = (1 +

1

k
)x(k� +

�

2
); k = 0; 1; 2; :::;

x4((k� +
�

2
)+) = (1 +

1

k
)x4(k� +

�

2
); k = 0; 1; 2; ::: :

Here ak = 1 + 1
k > 1: Let z(t) = � sin t Then z44(t) = sin t; a:e:; z4(k� + �

2 ) =
� cos(k� + �

2 ) = 0; p1 = �1; p2 = 1; and

ck =

�
2
k ; k odd
0; k even

:

Since

(t1 � t0) +
b1
a1
(t2 � t1) + � � �+

b1b2 � � � bn
a1a2 � � � an

(tn+1 � tn) + � � � = �+ �+ � � �+ �+ � � � =1;

jc1j
a1

+
jc2j
a1a2

+ � � �+ jcnj
a1a2 � � � an

+ � � � � 2

1 � 2 +
2

2 � 3 + � � �+
2

n � (n+ 1) + � � � <1:

so the conditions (H1) and (H2) hold. Furthermore,Z t2

t1

q(t)4t+ a2
b2

Z t3

t2

q(t)4t+ � � �+ a2a3 � � � am
b2b3 � � � bm

Z tm+1

tm

q(t)4t+ � � �

=

Z 3�
4

�
2

t24t+
Z �+ 3�

4

�

t24t+ � � �+
Z k�+ 3�

4

k�

t24t+ � � � =1:

The conditions of Theorem 2 are satis�ed. Our system is oscillatory.
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