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Abstract

We study the uniqueness of meromorphic functions concerning nonlinear dif-
ferential polynomials with weighted value sharing method and prove a uniqueness
theorem which improves and generalizes a recent result in [16].

1 Introduction

In this paper, by meromorphic functions we will always mean meromorphic functions
in the complex plane. We adopt the standard notations in the Nevanlinna theory
of meromorphic functions as explained in [6], [14] and [15]. It will be convenient to
let E denote any set of positive real numbers of �nite linear measure, not necessarily
the same at each occurrence. For a nonconstant meromorphic function h, we denote
by T (r; h) the Nevanlinna characteristic of h and by S(r; h) any quantity satisfying
S(r; h) = ofT (r; h)g(r !1; r 62 E):
Let f and g be two nonconstant meromorphic functions. For a 2 C [ f1g we say

that f and g share the value a CM (counting multiplicities) if f � a and g� a have the
same zeros with the same multiplicities and we say that f and g share the value a IM
(ignoring multiplicities) if we do not consider the multiplicities.
Throughout this paper, we need the following de�nition.

�(a; f) = 1� lim sup
r�!1

N(r; a; f)

T (r; f)
;

where a is a value in the extended complex plane.

In 1959, W.K. Hayman proved that if f is a transcendental meromorphic function
and n(� 3) is a positive integer, then fnf 0 = 1 has in�nitely many solutions (see [5,
Corollary of Theorem 9]). Corresponding to which, the following result was obtained
by Fang and Hua [3] and by Yang and Hua [13] respectively.

THEOREM A. Let f(z) and g(z) be two nonconstant entire functions, n � 6 be a
positive integer. If fnf 0 and gng0 share 1 CM, then either f(z) = c1ecz, g(z) = c2e�cz,
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where c1, c2 and c are three constants satisfying (c1c2)n+1c2 = �1 or f(z) � tg(z) for
a constant t such that tn+1 = 1.

Fang [4] considered about the k-th derivative instead of the �rst derivative and
proved the following theorems.

THEOREM B. Let f(z) and g(z) be two nonconstant entire functions, and let n;
k be two positive integers with n > 2k + 4. If [fn](k) and [gn](k) share 1 CM, then
either f(z) = c1e

cz, g(z) = c2e
�cz, where c1, c2 and c are three constants satisfying

(�1)k(c1c2)n(nc)2k = 1 or f(z) � tg(z) for a constant t such that tn = 1.
THEOREM C. Let f(z) and g(z) be two nonconstant entire functions, and let n;

k be two positive integers with n � 2k + 8. If [fn(f � 1)](k) and [gn(g � 1)](k) share 1
CM, then f(z) � g(z).
Recently Bhoosnurmath and Dyavanal [2] also considered the uniqueness of mero-

morphic functions corresponding to the k-th derivative of a linear polynomial expres-
sion. They proved the following theorem.

THEOREM D. Let f(z) and g(z) be two nonconstant meromorphic functions, and
let n; k be two positive integers with n > 3k + 8. If [fn(z)](k) and [gn(z)](k) share 1
CM, then either f(z) = c1e

cz, g(z) = c2e
�cz, where c1, c2 and c are three constants

satisfying (�1)k(c1c2)n(nc)2k = 1 or f(z) � tg(z) for a constant t such that tn = 1.
Naturally, one may ask the following question: Is it possible in any way to relax

the nature of sharing the value 1 in the above results?

It is worth mentioning that in the above area some investigations has already been
carried out by Zhang and Lu [16]. To state the result we require the following de�nition
known as weighted sharing of values introduced by Lahiri [8, 9] which measure how
close a shared value is to being shared CM or to being shared IM.

DEFINITION 1. Let k be a nonnegative integer or in�nity. For a 2 C [ f1g we
denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity m is
counted m times if m � k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say
that f , g share the value a with weight k.

The de�nition implies that if f , g share a value a with weight k, then z0 is an a-
point of f with multiplicity m(� k) if and only if it is an a-point of g with multiplicity
m(� k) and z0 is an a-point of f with multiplicity m(> k) if and only if it is an a-point
of g with multiplicity n(> k), where m is not necessarily equal to n.

We write f , g share (a; k) to mean that f , g share the value a with weight k. Clearly
if f , g share (a; k) then f , g share (a; p) for any integer p, 0 � p < k. Also we note that
f , g share a value a IM or CM if and only if f , g share (a; 0) and (a;1) respectively.
Zhang and Lu [16] proved the following theorem.

THEOREM E. Let f(z) and g(z) be two nonconstant transcendental meromorphic
functions, and let n(� 1), k(� 1), l(� 0) be three integers. Suppose that [fn](k) and
[gn](k) share (1; l), if l � 2 and n > 3k + 8 or if l = 1 and n > 5k + 11 or if l = 0
and n > 9k + 14, then either f(z) = c1ecz, g(z) = c2e�cz, where c1, c2 and c are three
constants satisfying (�1)k(c1c2)n(nc)2k = 1 or f(z) � tg(z) for a constant t such that
tn = 1.

Regarding Theorem E, it is natural to ask the following questions.
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QUESTION 1. What can be said about the relation between two nonconstant
meromorphic functions f and g, if ffn(fm� a)g(k) and fgn(gm� a)g(k) share (b; l) for
a nonzero constant b?

QUESTION 2. What can be said about the relation between two nonconstant
meromorphic functions f and g, if ffn(f � 1)mg(k) and fgn(g� 1)mg(k) share (b; l) for
a nonzero constant b?

Recently Liu [11] proved the following theorem relating with Question 1.

THEOREM F. Let f(z) and g(z) be two nonconstant meromorphic functions, and
let n, m and k be three positive integers, and �, � be two constants such that j�j+j�j 6=
0. If [fn(�fm + �)](k) and [gn(�gm + �)](k) share (1; l), and one of the following
conditions holds: (a) l � 2 and n > 3m�� + 3k + 8; (b) l = 1 and n > 4m�� + 5k + 10;
(c) l = 0 and n > 6m�� + 9k + 14: Then
(i) when �� 6= 0, if m � 2 and �(1; f) > 3

m+n , then f(z) � g(z); if m = 1 and
�(1; f) > 3

n+1 , then f(z) � g(z); and
(ii) when �� = 0, if f(z) 6= 1 and g(z) 6= 1, then either f(z) � tg(z), where

t is a constant satisfying tn+m
��
= 1, or f(z) = c1e

cz, g(z) = c2e
�cz, where c1,

c2 and c are three constants satisfying (�1)k�2(c1c2)n+m
��
[(n + m��)c]2k = 1 or

(�1)k�2(c1c2)n+m
��
[(n+m��)c]2k = 1, where m�� = ��m,

�� =

�
0 if � = 0
1 if � 6= 0.

In this paper, we will prove the following theorem which not only provide a supple-
mentary result of Theorem D, also improve and generalize Theorem E. Moreover, our
theorem deal with Question 2 also.

THEOREM 1. Let f(z) and g(z) be two transcendental meromorphic functions,
and let n(� 1), k(� 1), m(� 0) and l(� 0) be four integers. Let [fn(f � 1)m](k) and
[gn(g � 1)m](k) share (b; l) for a nonzero constant b. Then
(i) when m = 0, if f(z) 6=1, g(z) 6=1 and l � 2, n > 3k+8 or l = 1, n > 5k+10

or l = 0, n > 9k + 14, then either f(z) = c1e
cz, g(z) = c2e

�cz, where c1, c2 and c
are three constants satisfying (�1)k(c1c2)n(nc)2k = b2 or f(z) � tg(z) for a constant t
such that tn = 1;
(ii) when m = 1 and �(1; f) > 2

n , then either [f
n(f � 1)m](k)[gn(g � 1)m](k) � b2

or f(z) � g(z) provided one of l � 2, n > 3k + 11 or l = 1, n > 5k + 14 or l = 0,
n > 9k + 20 holds; and
(iii) when m � 2 and l � 2, n > 3k +m+ 10 or l = 1, n > 5k + 2m+ 12 or l = 0,

n > 9k + 4m + 16, then either [fn(f � 1)m](k)[gn(g � 1)m](k) � b2 or f(z) � g(z) or
f(z) and g(z) satisfy the algebraic equation R(f; g) = 0, where

R(x; y) = xn(x� 1)m � yn(y � 1)m:

REMARK 1. The possibility [fn(f �1)m](k)[gn(g�1)m](k) � b2 of Theorem 1 does
not arise for k = 1.

REMARK 2. Obviously Theorem 1 is an improvement of Theorem E for m = 0
and l = 1.
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Though the standard de�nitions and notations of the value distribution theory are
available in [6], we explain some de�nitions and notations which are used in the paper.

DEFINITION 2. [7] Let p be a positive integer and b 2 C [ f1g: Then by
N(r; b; f j� p) we denote the counting function of those b-points of f (counted with
multiplicities) whose multiplicities are not greater than p. By N(r; b; f j� p) we denote
the corresponding reduced counting function.

In an analogous manner we de�ne N(r; b; f j� p) and N(r; b; f j� p).
DEFINITION 3. [10] Let k be a positive integer or in�nity. We denote by Nk(r; b; f)

the counting function of b-points of f , where an b-point of multiplicity m is counted m
times if m � k and k times if m > k. That is

Nk(r; b; f) = N(r; b; f) +N(r; b; f j� 2) + :::+N(r; b; f j� k):

DEFINITION 4. For b 2 C [ f1g we put

�k(b; f) = 1� lim sup
r!1

Nk(r; b; f)

T (r; f)
:

2 Lemmas

In this section we present some lemmas which will be needed to prove the theorems.

LEMMA 1. [12] Let f(z) be a nonconstant meromorphic function and P (f) =
a0 + a1f + a2f

2 + :::+ anf
n, where a0, a1, a2, ... ,an are constants and an 6= 0. Then

T (r; P (f)) = nT (r; f) + S(r; f):

LEMMA 2. [11] Let f(z) and g(z) be two nonconstant meromorphic functions,
k(� 1), l(� 0) be integers. Suppose that f (k) and g(k) share (1; l). If one of the
following conditions holds, then either f (k)(z)g(k)(z) � 1 or f(z) � g(z).
(i) l � 2 and �1 = 2�(1; f) + (k + 2)�(1; g) + �(0; f) + �(0; g) + �k+1(0; f) +

�k+1(0; g) > k + 7;
(ii) l = 1 and�2 = (k+3)�(1; f)+(k+2)�(1; g)+�(0; f)+�(0; g)+2�k+1(0; f)+

�k+1(0; g) > 2k + 9;
(iii) l = 0 and �3 = (2k + 4)�(1; f) + (2k + 3)�(1; g) + �(0; f) + �(0; g) +

3�k+1(0; f) + 2�k+1(0; g) > 4k + 13:

LEMMA 3. Let f and g be two nonconstant meromorphic functions and n(� 1),
m(� 1), k(� 1) be three integers. Then

[fn(f � 1)m](k)[gn(g � 1)m](k) 6� b2;

for k = 1 and n � m+ 3.
PROOF. If possible, let

[fn(f � 1)m](k)[gn(g � 1)m](k) � b2;
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for k = 1. That is,

fn�1(f � 1)m�1(cf � d)f 0gn�1(g � 1)m�1(cg � d)g0 � b2;

where c = n +m and d = n. Let z0 be a 1-point of f with multiplicity p(� 1), and a
pole of g with multiplicity q(� 1) such that

mp� 1 = (n+m)q + 1;

i.e.,
mp = (n+m)q + 2 � n+m+ 2;

i.e.,

p � n+m+ 2

m
:

Let z1 be a zero of cf � d with multiplicity p1(� 1), and a pole of g with multiplicity
q1(� 1) such that

2p1 � 1 = (n+m)q1 + 1;

i.e.,

p1 �
n+m+ 2

2
:

Let z2 be a zero of f with multiplicity p2(� 1); and a pole of g with multiplicity q2(� 1).
Then

np2 � 1 = (n+m)q2 + 1: (1)

From (1) we get
mq2 + 2 = n(p2 � q2) � n;

i.e.,

q2 �
n� 2
m

:

Thus from (1) we get

np2 = (n+m)q2 + 2 �
(n+m)(n� 2)

m
+ 2;

i.e.,

p2 �
n+m� 2

m
:

Since a pole of f is either a zero of g(g � 1)(cg � d) or a zero of g0, we have

N(r;1; f) � N(r; 0; g) +N(r; 1; g) +N

�
r;
d

c
; g

�
+N0(r; 0; g

0) + S(r; f) + S(r; g)

�
�

m+ 2

n+m+ 2
+

m

n+m� 2

�
T (r; g) +N0(r; 0; g

0) + S(r; f) + S(r; g);

where N0(r; 0; g
0) denotes the reduced counting function of those zeros of g0 which are

not the zeros of g(g � 1)(cg � d).
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Then by the second fundamental theorem of Nevanlinna we get

2T (r; f) � N(r; 0; f) +N(r; 1; f) +N

�
r;
d

c
; f

�
+N(r;1; f)�N0(r; 0; f

0) + S(r; f)

�
�

m+ 2

n+m+ 2
+

m

n+m� 2

�
fT (r; f) + T (r; g)g �N0(r; 0; f

0) +

N0(r; 0; g
0) + S(r; f) + S(r; g): (2)

Similarly we get

2T (r; g) �
�

m+ 2

n+m+ 2
+

m

n+m� 2

�
fT (r; f) + T (r; g)g+N0(r; 0; f

0)

�N0(r; 0; g
0) + S(r; f) + S(r; g): (3)

Adding (2) and (3) we obtain�
1� m+ 2

n+m+ 2
� m

n+m� 2

�
fT (r; f) + T (r; g)g � S(r; f) + S(r; g);

which is a contradiction for n � m+ 3. This proves the lemma.
LEMMA 4. [1] Let f , g be two nonconstant meromorphic functions and let, k � 1

and n > 3k + 8 be two integers. If [fn](k)[gn](k) � b2, where b(6= 0), be a constant,
then f(z) = c1e

cz, g(z) = c2e
�cz, where c1, c2 and c are three constants satisfying

(�1)k(c1c2)n(nc)2k = b2.

3 Proof of Theorem 1

We consider F (z) = fn(f�1)m
b and G(z) = gn(g�1)m

b . Using Lemma 1, we get

�(1; F ) = 1� lim sup
r�!1

N(r;1;F )
T (r; F )

= 1� lim sup
r�!1

N
�
r;1; f

n(f�1)m
b

�
(m+ n)T (r; f)

� 1� lim sup
r�!1

T (r; f)

(m+ n)T (r; f)
� n+m� 1

m+ n
: (4)

Similarly

�(1; G) � n+m� 1
m+ n

: (5)

�(0; F ) = 1� lim sup
r�!1

N(r; 0;F )

T (r; F )
= 1� lim sup

r�!1

N
�
r; 0; f

n(f�1)m
b

�
(m+ n)T (r; f)

� 1� lim sup
r�!1

(1 +m�)T (r; f)

(m+ n)T (r; f)
� n+m� 1�m�

m+ n
; (6)

where

m� =

�
0 if m = 0
1 if m � 1.
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Similarly

�(0; G) � n+m� 1�m�

n+m
: (7)

�k+1(0; F ) = 1� lim sup
r�!1

Nk+1(r; 0;F )

T (r; F )
= 1� lim sup

r�!1

Nk+1

�
r; 0; f

n(f�1)m
b

�
(m+ n)T (r; f)

� 1� lim sup
r�!1

(k +m+ 1)T (r; f)

(m+ n)T (r; f)
� n� k � 1

m+ n
: (8)

Similarly

�k+1(0; G) �
n� k � 1
m+ n

: (9)

Since F (k) and G(k) share (1; l), we discuss the following three cases:
Case 1. Let l � 2. From (4)-(9) we obtain

�1 = (k + 4)
n+m� 1
m+ n

+ 2
n+m� 1�m�

m+ n
+ 2

n� k � 1
m+ n

=
1

m+ n
[(k + 4)(n+m� 1) + 2(n+m� 1�m�) + 2(n� k � 1)] :

It is easily veri�ed that �1 > k + 7 provided n > 3k +m+ 2m� + 8: Since

3k +m+ 2m� + 8 =

8<: 3k + 8 if m = 0
3k + 11 if m = 1
3k +m+ 10 if m � 2,

by (i) of Lemma 2 we obtain either F (k)G(k) � 1 or F � G.
Case 2. Let l = 1. Then from (4)-(9) we obtain

�2 = (2k + 5)
n+m� 1
m+ n

+ 2
n+m� 1�m�

m+ n
+ 3

n� k � 1
m+ n

=
1

m+ n
[(2k + 5)(n+m� 1) + 2(n+m� 1�m�) + 3(n� k � 1)] :

It is easily veri�ed that �2 > 2k + 9 provided n > 5k + 2m+ 2m� + 10: Since

5k + 2m+ 2m� + 10 =

8<: 5k + 10 if m = 0
5k + 14 if m = 1
5k + 2m+ 12 if m � 2,

by (ii) of Lemma 2 we obtain either F (k)G(k) � 1 or F � G.
Case 3. Let l = 0. Then as Case 1 and Case 2, it is easy to verify that �3 > 4k+13

when n > 9k + 4m+ 2m� + 14: Since

9k + 4m+ 2m� + 14 =

8<: 9k + 14 if m = 0
9k + 20 if m = 1
9k + 4m+ 16 if m � 2,
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by (iii) of Lemma 2 we obtain either F (k)G(k) � 1 or F � G.
We suppose that F (k)G(k) � 1. That is

[fn(f � 1)m](k)[gn(g � 1)m](k) � b2: (10)

Let m = 0. Since f(z) 6= 1 and g(z) 6= 1, by (10) and Lemma 4 we obtain f(z) =
c1e

cz, g(z) = c2e�cz, where c1, c2 and c are three constants satisfying (�1)k(c1c2)n(nc)2k =
b2. Again by Lemma 3,

[fn(f � 1)m](k)[gn(g � 1)m](k) 6� b2;

for k = 1 and m � 1. Next we suppose that

F � G:

i.e.,
fn(f � 1)m � gn(g � 1)m: (11)

Now we consider the following three subcases.
Subcase (i). Let m = 0. Then from (11) we get f � tg for a constant t such that

tn = 1.
Subcase (ii). Let m = 1. Then from (11) we obtain

fn(f � 1) � gn(g � 1): (12)

Suppose f 6� g. Let h = f
g be a constant. Then from (12) it follows that h 6= 1,

hn 6= 1, hn+1 6= 1 and g = 1�hn
1�hn+1= constant, a contradiction. So we suppose that h

is not a constant. Since f 6� g, we have h 6� 1. From (12) we obtain g = 1�hn
1�hn+1 and

f =
�

1�hn
1�hn+1

�
h. Hence it follows that

T (r; f) = nT (r; h) + S(r; f):

Again by second fundamental theorem of Nevanlinna, we have

N(r;1; f) =
nX
j=1

N(r; �j ;h) � (n� 2)T (r; h) + S(r; f);

where �j (6= 1) (j = 1; 2; :::; n) are distinct roots of the equation hn+1 = 1. So we
obtain

�(1; f) = 1� lim sup
r�!1

N(r;1; f)
T (r; f)

� 2

n
;

which contradicts the assumption �(1; f) > 2
n : Thus f � g:

Subcase (iii). Let m � 2: Then from (11) we obtain

fn[fm+���+(�1)i mCm�ifm�i+���+(�1)m] = gn[gm+���+(�1)i mCm�igm�i+���+(�1)m]:
(13)
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Let h = f
g . If h is a constant, then substituting f = gh in (13) we obtain

gn+m(hn+m�1)+ � � �+(�1)i mCm�ign+m�i(hn+m�i�1)+ � � �+(�1)mgn(hn�1) = 0;

which imply h = 1. Hence f � g:
If h is not a constant, then from (13) we can say that f and g satisfy the algebraic

equation R(f; g) = 0, where

R(x; y) = xn(x� 1)m � yn(y � 1)m:

This completes the proof of the theorem.
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