Applied Mathematics E-Notes, 11(2011), 139-147 © ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/~amen/

A Conjugate Gradient Method With Sufficient
Descent And Global Convergence For Unconstrained
Nonlinear Optimization*

Hailin Liuf, Sui Sun Cheng!, Xiaoyong Li®

Received 9 March 2011

Abstract

In this paper a new conjugate gradient method for unconstrained optimization
is introudced, which is sufficient descent and globally convergent and which can
also be used with the Dai-Yuan method to form a hybrid algorithm. Our methods
do not require the strong convexity condition on the objective function. Numerical
evidence shows that this new conjugate gradient algorithm may be considered as
one of the competitive conjugate gradient methods.

1 Introduction

There are now many conjugate gradient schemes for solving unconstrained optimization
problems of the form

min{f(z): = € R"}

where f is a continuously differentiable function of n real variables with gradient g =
Vf. An essential feature of these schemes is to arrive at the desired extreme points
through the following nonlinear conjugate gradient algorithm

a* D) = 20 4 o dy, (1)

where «ay, is the stepsize, and dj, is the conjugate search direction defined by

—9k k=1
dp = 2
k {—gwﬁkdkl k>1 2)

where g = Vf (x(k)) and (3, is an update parameter. In a recent survey paper by
Hager and Zhang [5], a number of choices of the parameter [3;, are given in chronological
order. Two well known choices are recalled here for later use:
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2
Dai-Yuan: 85 = %Lﬂgku (3)
k—1Yk
! el |
Yk
Hager-Zhang: 1% = Y — 2dj— Tk, 4
’ i1 ' df_ 1Yk W

where || || is the Euclidean norm and yi = gx — gr—1. In (1) the stepsize oy is obtained

through the exact linear search (i.e., g (x(k) + akdk)T d, = 0) or inexact linear search
with Wolfe’s criterion defined by

F@® + ardy) < f(2™) + pogt di, (5)

and
g(m(k) + akdk)Tdk > ag,zdk (6)

where 0 < p <o < 1.

In 1999, Dai and Yuan [2] proposed the DY conjugate gradient method using S,
defined by (3). In 2001 [1], they introduced an updated formula of 5, with three
parameters, which may be regarded as a convex combination of several earlier choices
of B, listed in [5]; but the three parameters are restricted in small intervals. Based on
the ideas of Dai-Yuan, Andrei in [3] presents yet another sufficient descent and global
convergence algorithm that avoided the strongly convex condition on the objective
function f(x) assumed by Hager and Zhang [4] incoporating 8% in (4) (to be named
the HZ method in the sequel).

However, the method by Andrei requires some additional conditions (see the state-
ment following the proof of Theorem 1, and also the additional conditions such as
941 (gkt1 — gk) > 0 and 0 < w < ), < Q in Theorem 2 of [3]). Therefore it is of in-
terest to find further alternate methods that are as competitive, yet neither the strong
convexity of the objective function nor the above mentioned conditions are required.

In this note, we introduce a new formulation of the update parameter [ defined
by

;CVEW _ H9k||2 (7)
M|d£71gk| + dzlﬂgk

Note that if we use the exact line search, our new algorithm reduces to the algorithm of
Dai and Yuan. In this paper, however, we consider general nonlinear functions and an
inexact line search. By means of our 3 kN EW and the 8 kD Yin (3), we may then introduce
a hybrid algorithm for finding the extreme values of f.

Global convergence of our methods will be established and numerical evidence will

be listed to support our findings.
2 New Algorithm and Convergence
As in [2], we assume that the continuously differentiable function f is bounded in the

level set L1 = {z|f(z) < f(z™M)}, where z(1) is the starting point; and that g(z) is
Lipschitz continuous in Ly, i.e., there exists a constant L > 0 such that ||g(x) —g(y)|| <
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L||xz — y|| for all z,y € L;. We remark that in Andrei [3], it is required that the level
set L1 be bounded instead of the slightly weaker condition of Dai-Yuan.

Also, we use the same algorithm in [2] which is restated here for the sake of conve-
nience:

Step 1. Initialize starting point (¥, and p > 1, a very small positive ¢ > 0.
Compute d; = —g1. Set k= 1.

Step 2. If ||gx || < &, then stop and output =¥, else go to step 3.

Step 3. Compute z**1) = 2(®) 4 q,d;, through inexact linear search by (5) and

(6).
Step 4. Compute dj1 by (2) and (7). Compute gxt1. Set & = k+ 1 and go to step
2.

In order to consider convergence, we first notice, by (6), that
di_1(gk — ge—1) = odi_1gr—1 — df_1gk—1 = (0 — 1)d}_1 gr—1. (8)

LEMMA 1. If u > 1, then gf'dj, < —(1 = J)|lgx[[* <0 for k=12, ...

PROOF. If k = 1 then d; = —g; and g¥d; = —||g1]]* < —(1 — %)||gl||2 < 0 since
p > 1. Assume by induction that g  dp—1 < —(1 — l%)||gk_1\|2 < 0. By (2), (6), (7)
and (8), we have

T 2 NEW T 2 ||9kH2 T
gedi = —llgell” +B8c ™" gp di—1 = —lgkl[” + gld,_y
pldl_ gkl +df_ (g — gr—1)

< —llgell® + [lg? 19T dyo_1|

B lldi_y gkl + di_y (g — gr—1)] '

< ol + b, - ol s

B luldf_ g1l + (0 — 1)di_ 1 grx—1|

llgx ]
< —lgklP + =719/ dr—1|
N|d£—19 |

1
= (13 ol
7

The proof is complete.
We remark that our Lemma 1 implies that dj is a sufficient descent direction.

LEMMA 2 (see [2]). If the sequence {z(®)} is generated by (1) and (2), the stepsize
ay, satisfies (5) and (6), and dy, is a descent direction, f is bounded and g(z) is Lipschitz

in the level set, then
. 9
> i < )

k=1

THEOREM 1 (Global convergence). If p > 1 in (7), f is bounded and g(z) is
Lipschitz in the level set, then our algorithm either terminates at a stationary point or
liminf ||gk|| = 0.



142 Gonjugate Gradient Method for Unconstrained Optimization

Proof. If our conclusion does not hold, then there exists a real number € > 0 such
that ||gx|| > €, for all k =1,2,.... Since dj + gx = 5, dr—1, we have

lldxl1* = Billdi—1l1* = [lgkl* — 295 di. (10)

By (8) and Lemma 1, we have

grde = =gkl + B8R "V gl di—s

[lgx||?
pldi_ gl + df_ (gx — gr—1)
—pldi_ ge| +df_y g1

= —llgxl* + gF di—1

= gk | I
/~L|d£719k‘ + d;{fl(gk — Gk—1)
di_ gk—1
< gl
pldy_ 19k |
Since df_lgk,l < 0 and dfgk < 0, we see that
2 pldi_y gellgf di|
Hoell” < —F—7—
|dj;— 1 91
that is,
2 2 T
NEW _ l|gw|| < gkl < i gkl

k ~ S .
pldi_ gkl + df_ (gx — gr—1) ~ pldi_ygkl ~ 1di_y gr—1]

Replace 3, in (10) with 85 %W, we get

el lldeall®  llgel® 1
T73y2 = T 2 T 72 T
(gkdk) (gk71dk—1) (gkdk) gkdk
_ lde—alP? _(||9k\| Lo 1
(9 1dk-1)?  “gidi gkl [lgr1[?
||dy—1? 1 ldenal® 1
(9F_1dk—1)?  loll* = (gf_1dk—1)* €
since d; = —g1, so that
Ml _ P k=1 1 k=1 _ 1 k-1_k
(gldr)? = (gfdr)? e gl & ~e 0 2 ¥
Thus

which is contrary to Lemma 2. The proof is complete.
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3 Hybrid Algorithm

We may build a hybrid algorithm (see discussions on hybrid algorithms in [5] for back-

ground information) based on B2 and our S P as follows: First we let

k NEW ) (11)

miv _ [ Bt 1B < B and gldy1 <0
k otherwise

and then we replace S5 ©" with S7"' at step 4 of the algorithm in the last section.

THEOREM 2. For k = 1,2, ..., we have gl d, < —(1 — i)||gk|\2 (so that our new
method is also sufficient descent).

PROOF. When n = 1, since 4 > 1 and d; = —g;, we have g7'd; = —||g1]]? <
—(1 - l)||gl\|2 < 0. Assume by induction that g  dp_1 < —(1 — l)||gk 12 <o, If
wie — PY | then gfd,_1 > 0. Therefore, in case where g7 = B¢ or ' =
iYEW, we have
i die = —llgel® + B gl di—r < =lgil* + B 7" g di—r.

From the proof of Lemma 1, we can then get gl dj, < —(1 — i)||gk\|2

THEOREM 3. (Global convergence). If > 1, f is bounded and g(x) is Lipschitz in
the level set, then our algorithm either terminates at a stationary point or lim inf ||g|| =
0.

Proof. As in the proof of Theorem 1, if our conclusion does not hold, then we have

grdy = —|\gk||2+ﬁm” Fdy—1
< *||9k||2+5k gt dy_1
7ﬂ‘dg 19k| +d£71 gk—1
pldf_ gxl + di_y (g1 — gr—1)
2
Al p

llgxl?

< k-1
pldi_ gel + df_ (g — gr—1) "
= ﬂiVEWd —19k—1-
Since gf dj, < 0 for all k > 1, therefore,
T
BNEW < i, Ik _ |9k di| ) (12)
di_gs—1 |df_ 9k
On the other hand, by (12) and (10), we have
ldell> =BR[] = |lgell* — 297 dx
< BN dr-a P = llgel® — 291 di
k)2 dk—1]?
< AUy 2oyt

(95 -1dk—1)?

The remaining proof is the same as the proof of Theorem 1.
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4 Numerical Evidences

In this section, we will test the DY, HZ, the ANDREI (see [3]) and our NEW as well as
HYBRID conjugate methods with weak Wofle line search. For each method, we take
p=020=03,=11in (5)-(6), and the termination condition is ||gx|| < & = 107°.
The test problems are extracted from [6]. Since the computational procedures are
similar to those in [6] and in [7], we will not bother with the detailed descriptions of
the numerical data. Instead, we prepare a Table which provides conclusions of our
numerical comparisons. More specifically, in this table, the terms Problem, Dim, NI,
NF, NG, -, * have the following meaning:

Problem: the name of the test problem;
Dim: the dimension of the problem;

NI: the total number of iterations;

NF: the number of the function evaluations;
NG: the number of the gradient evaluations;
-: method not applicable;

*. the best method.

Our Table (see the last two pages) shows that our new methods in some test prob-
lems outperform the Dai-Yuan method. Although the HZ method is also performing
well, but this method requires that the objective function is strongly convex and the
level set is bounded, so HZ method may not be applicable (such as the Gulf research
problem). In conclusion, our new methods are competitive among the well known
conjugate gradient methods for unconstrained optimization.
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DY NEW HYBRID HZ ANDREI
Problem Dim  NI/NF/NG NI/NF/NG NI/NF/NG NI/NF/NG NI/NF/NG
Penalty 11 100 102/324/117 76/214/87x 78/229/92 89/263/103 —
10000 - - - - -
Brown badly scaled | 2 1667/10003/1676 1668/10005/1674 1666/10001/1677 15/92/21 4/16/4x
Brown and Dennis 4 63/287/81 37/181/57x 57/270/83 41/212/72 50/288/80
Gulf research 3 316/970/327 944/2836,/946 764/2302/764 — 84 /543 /99x
Trigoonometric 10 78/151/80 41/58/54 41/58/50x 49/65/60 394/1839/411
10000 225/473/248 70/88/85 65/67/67x 79/119/104 53/156/76
Ext. Rosenbrock 500 57/191/65 120/397/147 44/161/72 27/130/52x 1611/10000/1613
10000 57/191/65 141/460/168 48/171/76 39/127/53x 74/319/72
Ext. Powell singular | 20 3225/9678/3229  3183/8548/3187  3334/10002/3337 104/290/115% 1456/10002/1462
10000 3334/10002/3337 3336/10002/3339 3334/10002/3337 152/414/164  56/231/72x
Beale 2 17/42/20 15/38/20« 27/69/29 16/42/21 50/151/65
Wood 4 2327/9399/2373  113/374/123 80/252/85x 127/394/133  711/4587/733
Chebyquad 20 2483/10002/2526  166/522/172 153/461/155% 155/473/162  484/1939/489
10000 2/22/1 2/22/1 2/22/1x 2/22/1 2/22/1
Brown almost-linear | 20 6/34/19 14/57/27 6/34/19x 6/36/19 7/44/26
10000 6/67/28 6/87/30 6/67/28 6/64/19x 7/61/29
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