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Abstract

We show that all real solutions of the nonlinear recurrence relation 'i+1 +
'i�1 = ['i] can be expressed explicitly in terms of solutions u and " that satisfy
(u0; u1) = (1; 0) and ("0; "1) = (s; 0) where s 2 [0; 1=2]: As applications, we are
able to show the translation symmetry between solutions and that all solutions
have prime periods 1; 4; 6 or 12:

1 Introduction

For linear homogeneous recurrence relations such as

'i+1 + 'i�1 = 'i; i 2 Z: (1)

where Z is the set of integers, it is well known that all its real (or complex) solutions
can be explicitly given. Indeed, we may �nd the solution u = fuigi=Z that satis�es
(u0; u1) = (1; 0) and the solution v = fvigi=Z that satis�es (v0; v1) = (0; 1) and then
any other solution ' of (1) is of the form

' = '0u+ '1v: (2)

The solutions u and v can further be determined. Indeed, the characteristic equation
of (1) is

x2 � x+ 1 = 0;
which is a cyclotomic polynomial of order 6 with roots �� = cos(�3 ) � i sin(�3 ): Then
the sequences u and v can be determined to be

u =
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k�

3

�
� 1p

3
sin

�
k�

3

��
k2Z

(3)

and

v =

�
2p
3
sin

�
k�

3

��
k2Z

(4)
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74 Generators for Nonlinear Recurrences

respectively (see e.g. [1]).
For nonlinear recurrence relations, however, there are no uni�ed theories for �nding

the explicit forms of their solutions and each relation has to be handled in a unique
manner. Therefore it is of great interest to show that some nonlinear recurrences may
admit general solutions and from the corresponding explicit expressions interesting
consequences can be derived.
In this note, we show that for a related nonlinear three term recurrence relation1

'i+1 + 'i�1 = ['i] ; i 2 Z; (5)

where [x] is the integral part of the real number x; all its real solutions can be given
in explicit forms. Indeed, we may roughly see this fact as follows. First, adding an
integer solution to the recurrence (1) to any solution to the nonlinear recurrence (5)
gives a new solution to the nonlinear recurrence. This immediately lets one reduce
to the case in which '0 and '1 are 0: Moreover, replacing '1 by 0 does not change
the subsequent terms of the sequence. Thus one need only see what happens to the
recurrence when it is seeded with '0 = s and '1 = 0 for some s in [0; 1), and this
can be done by carefully go through the solutions sequences one by one. Although the
idea is quite simple, there are still many details and �ne adjustments. Indeed, we show
that it is better to use s 2 [0; 1=2]; and that as applications, we may, in a relatively
easy manner, show some of the symmetry (under translation) and periodic properties
of the real solutions of (5) (see the following Figures in which numerical simulations of
solutions of (5) are shown).

Before deriving our results, let us �rst go through some elementary concepts and
properties of our nonlinear equation (5).

1This nonlinear recurrence may be regarded as the steady state equation for an in�nite linear array

of arti�cial neuron pools obeying the update relation '(t+1)i � '
(t)
i = '

(t)
i�1 + '

(t)
i+1 �

h
'
(t)
i

i
; t =

0; 1; :::; i 2 Z:
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First, for any x 2 R; we denote the fractional part of x as

hxi = x� [x] :

Hence, hxi 2 [0; 1) ; and if � is an integer and " 2 [0; 1) ; then [�+ "] = [�] = � and
[�� "] = [�� 1] = �� 1; and if �; 
 are two integers, then [�] + [
] = [� + 
] = � + 
:
A real sequence  = f igi2Z is said to be integral if each  i is an integer. A

translation of  is a sequence Ej ; where j 2 Z; de�ned by

(Ej )m =  m�j; m 2 Z;

(in particular, E0 =  ).
A (scalar or vector) sequence  = f mgm2Z is said to be periodic if there is a

positive integer � such that  i+� =  i for all i 2 Z: The positive integer � is called a
period of  : If  is periodic, then among all periods of  ; there is the least one, which
we will denote by 
 . If 
 = !; then  is said to be !-periodic (or said to have
prime period !). For an !-periodic sequence  ; it is clearly determined completely
by one of its cycles of the form

 [�] = ( �;  �+1; :::;  �+!�1):

Three elementary facts about periodic sequences are: (i) the prime period of a real
sequence  is a factor of its periods, (ii) a sequence and its translation have the same
prime period, and (iii) if � and � are two real sequences with prime periods m and n
respectively, then the least common multiple of m and n is a period of � + �:

2 General Solutions

A solution of (5) is a real sequence ' = f'igi2Z which renders (5) into an identity after
substitution. Since (5) can be rewritten as

'i+1 = ['i]� 'i�1; (6)

or
'i�1 = ['i]� 'i+1; (7)

therefore, we may see that a solution ' of (5) is uniquely determined by any two of its
consecutive terms ('k; 'k+1): In particular, we may easily see that ' is an integral
solution of (5) if, and only if, for any k 2 Z; 'k and 'k+1 are integers. By means of
the properties of the Gauss function, another elementary fact is also easy to see.

Lemma 1. ' is an integral solution of (5) if, and only if, it is an integral solution
of (1).

In view of Lemma 1 and our previous discussions about (1), we see that every
integral solution ' of (5) is of the form

' = '0u+ '1v: (8)
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Although u and v were already been given by (3) and (4), we may also utilize the
facts that u and v are 6-periodic and derive them directly from (5). Indeed, by direct
computation, we may easily see that

u[0] = (1; 0;�1;�1; 0; 1) (9)

and
v[0] = (0; 1; 1; 0;�1;�1):

By means of these cycles, we may observe the interesting fact that

v = E2u:

Furthermore, by (5), we see that ' = f0g if, and only if, ('0; '1) = (0; 0):
Next, let us call a solution ' = f'igi2Z of (5) fractional if '0; '1 2 [0; 1).
We assert that all fractional solutions of (5) can be �generated�by an 1-parameter

family of solutions of (5). To this end, let s 2 [0; 1=2] and let "(s) be the solution of
(5) determined by the initial condition

("0(s); "1(s)) = (s; 0); s 2 [0; 1=2]:

Lemma 2. For s 2 [0; 1=2]; let "(s) be the fractional solution of (5) with ("0(s); "1(s)) =
(s; 0) : Then,
(i) "(0) = f0gi2Z ;
(ii) "(1=2) is 6-periodic and "[0] = (1=2; 0;�1=2;�1;�1=2; 0) ; and
(iii) if s 2 (0; 1=2) ; then "(s) is 12-periodic and

"[12] = (s; 0;�s;�1;�1 + s; 0; s0; 0;�s0;�1;�1 + s0; 0)

where s0 = 1� s:
Proof: Indeed, by (5), we may calculate "(0) or "(1=2) directly and check (i) as well

as (ii).
Now, we consider case (iii) where s 2 (0; 1=2) : By (5), "(s) is periodic with period

12: Next, we may check that 1; 2; 3; 4; 6 are not periods of "(s): Indeed, if 6 is a period
of "(s); then s = "0(s) = "6(s) = 1 � s so that we obtain the contradiction s = 1=2:
The other three cases can be handled in similar manners. The proof is complete.

For i 2 f0; 6g and j 2 f1; 7g; by direct veri�cation, it is easily shown that Ei� (s)+
Ej� (t) is a fractional solution of (5). By Lemma 2, 12 is a period of "(s) and "(t) and
hence is also a period of Ei" (s) +Ej" (t) : Conversely, any fractional solution of (5) is
of the form Ei� (s) + Ej� (t) for some i 2 f0; 6g; j 2 f1; 7g and s; t 2 [0; 1=2]: Indeed,
let ' be a fractional solution of (5). Then '0; '1 2 [0; 1): We may check that:
(i) if ('0; '1) 2 [0; 1=2]� [0; 1=2] ; then

' = E0"('0) + E
1"('1); (10)

(ii) if ('0; '1) 2 [0; 1=2)� (1=2; 1) ; then

' = E0"('0) + E
7"(1� '1); (11)
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(iii) if ('0; '1) 2 (1=2; 1)� [0; 1=2) ; then

' = E6"(1� '0) + E1"('1); (12)

(iii) if ('0; '1) 2 [1=2; 1)� [1=2; 1) n f(1=2; 1=2)g ; then

' = E6"(1� '0) + E7"(1� '1): (13)

For instance, to show (10), we only need to see from Lemma 2 that�
E0"('0) + E

1"('1)
�
0
= (('0; 0; :::; 0) + (0; '1; :::;�'1))0 = '0;

and �
E0"('0) + E

1"('1)
�
1
= (('0; 0; :::; 0) + (0; '1; :::;�'1))1 = '1:

To simplify the above expressions, let us de�ne a mapping

� (s; t) = (�1(s; t);�2(s; t)) =

8>><>>:
(0; 1) if (s; t) 2 [0; 1=2]� [0; 1=2] ;
(0; 7) if (s; t) 2 [0; 1=2)� (1=2; 1) ;
(6; 1) if (s; t) 2 (1=2; 1)� [0; 1=2) ;
(6; 7) if (s; t) 2 [1=2; 1)� [1=2; 1) n f(1=2; 1=2)g ;

(14)
and de�ne

x� =

�
x if x 2 [0; 1=2] ;

1� x if x 2 (1=2; 1) : (15)

Then we have the following conclusion.

Lemma 3. For i 2 f0; 6g and j 2 f1; 7g; Ei" (s) + Ej" (t) is a fractional solution
of (5) (with period 12). Conversely, any fractional solution ' of (5) is equal to

E�1('0;'1)"('�0) + E
�2('0;'1)"('�1):

Lemma 4. Any solution � of (5) is of the form  + � where  is the integral
solution of (5) determined by ( 0;  1) = ([�0] ; [�1]) and � is the fractional solution of
(5) determined by (�0; �1) = (h�0i ; h�1i):
The proof is rather easy. Indeed, it may be veri�ed directly that  + � is a solution

of (5). Since ( + �)0 = �0 and ( + �)1 = �1; by the uniqueness property of solutions
of (5), we see that � =  + �:

From the previous Lemmas, we have the following main result.

Theorem 1. For any �; � 2 Z and i 2 f0; 6g; j 2 f1; 7g; �u+ �
�
E2u

�
+Ei" (s) +

Ej" (t) is a solution of (5). Conversely, any real solution ' of (5) is of the form

' = �u+ �E2u+ Ei" (s) + Ej" (t) (16)

where
� = ['0] ; � = ['1] ; s = h'0i

�
; t = h'1i

�
; (i; j) = � (h'0i ; h'1i) (17)

(where u[0] is given by (9), "(s) by Lemma 2, � by (14) and x� by (15)).
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Indeed, for any �; � 2 Z and i 2 f0; 6g; j 2 f1; 7g; �u + �
�
E2u

�
is an integral

solution and Ei" (s)+Ej" (t) is a fractional solution of (5). Hence their sum by Lemma
4 is a solution of (5). Conversely, if ' is a solution of (5), then by Lemma 4, ' =  + �
where  is the integral solution of (5) determined by ( 0;  1) = (['0] ; ['1]) and hence
by Lemma 1 and (8),  = ['0]u+ ['1]E

2u; while � is the fractional solution

'� ['0]u+ ['1]E2u = Ei" (s) + Ej" (t)

of (5) determined by

(�0; �1) =
�
�

'� ['0]u+ ['1]E2u
�
0

�
;

�
'� ['0]u+ ['1]E2u

�
1

��
= (h'0i ; h'1i)

and hence by Lemma 3, s = h'0i
�
; t = h'1i

�
; (i; j) = � (h'0i ; h'1i).

As direct consequences, we may calculate several speci�c solutions: Let ' be the
solution of (5) with

(['0] ; ['1] ; h'0i ; h'1i) = (�; �; s; t) :

(i) If (�; �; s; t) = (0; 0; 0; 0); then

('0; '1; :::; '12) = (0; 0; :::; 0):

(ii) If (�; �; s; t) = (�1;�1; 1=2; 1=2); then

('0; '1; :::; '12) = (�1=2;�1=2; :::;�1=2) : (18)

(iii) If (s; t) 2 (0; 1=2)� f0g; then

('0; '1; :::; '12)

= (�; �; � � �;��;��; �� �; �; �; � � �;��;��; �� �)
+ (s; 0;�s;�1;�1 + s; 0; 1� s; 0;�1 + s;�1;�s; 0) : (19)

(iv) If (s; t) 2 f0g � (0; 1=2); then

('0; '1; :::; '12)

= (�; �; � � �;��;��; �� �; �; �; � � �;��;��; �� �)
+ (0; t; 0;�t;�1;�1 + t; 0; 1� t; 0;�1 + t;�1;�t) : (20)

(v) If (s; t) 2 (0; 1=2]� (0; 1=2] or (1=2; 1)� (0; 1=2) ; then

('0; '1; :::; '12)

= (�; �; � � �;��;��; �� �; �; �; � � �;��;��; �� �)
+ (s; t;�s;�1� t;�2 + s;�1 + t; 1� s; 1� t;�1 + s;�2 + t;�1� s;�t) :(21)

We may also obtain several symmetry properties (under translation) of (5) as fol-
lows.

Corollary 1. Let ' and � be solutions of (5). Then ' = E6� provided one of the
following conditions hold:
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(i) ['0] = [�0] ; ['1] = [�1] ; h'0i = 1� h�0i 2 (1=2; 1) and h'1i = 0 = h�1i ;
(ii) ['0] = [�0] ; ['1] = [�1] ; h'0i = 0 = h�0i and h'1i = 1� h�1i 2 (1=2; 1) ;
(iii) ['0] = [�0] ; ['1] = [�1] ; h'0i = 1 � h�0i 2 [1=2; 1) and h'1i = 1 � h�1i 2

[1=2; 1) ;
(iv) ['0] = [�0] ; ['1] = [�1] ; h'0i = h�0i 2 (0; 1=2) and h'1i = 1� h�1i 2 (1=2; 1) :
For instance, to show (i), we only need to see that

E6� = E6
�
�u+ �E2u+ E0" (h�0i) + E1" (0)

�
= �u+ �E2u+ E6" (h�0i) + E7"(0)
= ':

The other cases can be checked in similar manners.

We remark that the sequences ' and � in the above result have the same prime
period since ' is a translation of �: This fact will be used in the next section.

3 Periodicity

Let  be a solution of (5). If

(h 0i ; h 1i) 2 ff0g � (0; 1)g [ f(0; 1)� f0gg n f(0; 1=2); (1=2; 0)g ;

then  is 12-periodic. Indeed, by Theorem 1,  is periodic with period 12: For conve-
nience, let

([ 0] ; [ 1] ; h 0i ; h 1i) = (�; �; s; t): (22)

By the symmetry properties stated in Corollary 1, we only have to show the cases
where (s; t) 2 (0; 1=2)� f0g and (s; t) 2 f0g � (0; 1=2) : In the former case, by (19), if
 6 = � + 1 � s = � + s =  0; then s = 1=2 that is a contradiction. Thus 6 is not a
period of  : We may similarly show that 1; 2; 3 are not periods of  ; If  0 = � + s =
�� � 1 + s =  4 and  1 = � = � � � =  5; then (�; �) = (�2=3;�1=3) that is also
contradictory. Hence 4 is not a period of  : Thus  is 12-periodic. The later case can
be handled in similar manners. The proof is complete.

Next, let  be a solution of (5) with (22). Suppose

(s; t) 2 f(1=2; 0) ; (0; 1=2) ; (1=2; 1=2)g :

If (�; �; s; t) = (�1;�1; 1=2; 1=2) ; then  is 1-periodic (and  = f�1=2g); otherwise,
 is 6-periodic. Indeed, the former statement follows from (18). As for the later
statement, note that � (0; 1=2) = � (1=2; 1=2) = � (1=2; 0) = (0; 1) : Suppose (�; �) 6=
(�1;�1) : Then by (19) or (20), we see that 6 is a period of  since (h 6i ; h 7i) =�
h 0i

�
; h 1i

��
= (h 0i ; h 1i) : We �rst consider (s; t) = (1=2; 1=2) : Suppose  0 =

� + 1=2 = �� � 3=2 =  3 and  1 = � + 1=2 = �� � 3=2: Then (�; �) = (�1;�1)
which is a contradiction and hence  cannot be 1- nor 3-periodic. If 2 is a period,
then  0 = � + 1=2 = �� � � � 1=2 =  2 and  1 = � + 1=2 = �� � 1 � 1=2 =  3
which lead to (�; �) = (�1;�1) which is contradictory to our assumption. Therefore,
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 is 6-periodic. The other two cases can be proved in similar manners. The proof is
complete.

Next, let  be a solution of (5) with (22). Suppose (s; t) 2 (0; 1) � (0; 1) n
f(1=2; 1=2)g : If (�; �) = (�1;�1); then 
 = 4; otherwise, 
 = 12: Indeed, in view
of Corollary 1, we only have to consider the case where (s; t) 2 f(0; 1=2]� (0; 1=2]g n
f(1=2; 1=2)g and (1=2; 1) � (0; 1=2) : However, by (21), we may just show the case
where (s; t) 2 f(0; 1=2]� (0; 1=2]g n f(1=2; 1=2)g : We �rst show that  is either 4- or
12-periodic. To this end, we �rst apply Theorem 1 to obtain

 = �u+ �
�
E2u

�
+ E0�(s) + E1�(t); (23)

which has the period 12: Thus, we have

( 4;  5;  6;  7) = (��; �� �; �; �) + (�2 + s;�1 + t; 1� s; 1� t) : (24)

If

 0 = �+ s = �+ 1� s =  6;

 1 = � + t = � + 1� t =  7;

then (s; t) = (1=2; 1=2) which is a contradiction. Hence  cannot be 1-, 2-, 3-, 6-
periodic, that is  is either 4- or 12-periodic. Next, suppose 
� = 4: Then by (24), we
have  4 = �� � 2 + s = � + s =  0 and  5 = � � � � 1 + t = � + t =  1 which is
equivalent to (�; �) = (�1;�1) :
We summarize the above discussions in the following result which provide the prime

periods of all the solutions of (5).

Theorem 2. For any solution  of (5) with (�; �; s; t) = ([ 0] ; [ 1] ; h 0i ; h 1i) :
(i) If (�; �; s; t) = (0; 0; 0; 0) or (�1;�1; 1=2; 1=2); then  = f0g or f�1=2g respec-

tively.
(ii) If (s; t) 2 f(0; 1)� (0; 1)g n f(1=2; 1=2)g and (�; �) = (�1;�1); then  is 4-

periodic.
(iii) If (s; t) 2 f(1=2; 0) ; (0; 1=2) ; (1=2; 1=2)g and (�; �; s; t) 6= (�1;�1; 1=2; 1=2);

then  is 6-periodic.
(iv) If (s; t) 2 f(0; 1)� f0gg [ ff0g � (0; 1)g n f(1=2; 0) ; (0; 1=2)g ; then  is 12-

periodic.
(v) If (s; t) 2 f(0; 1)� (0; 1)g n f(1=2; 1=2)g and (�; �) 6= (�1;�1); then  is 12-

periodic.

4 Conclusions

For the nonlinear recurrence relation

'i+1 + 'i�1 = ['i] ; i 2 Z; (25)

all its real solutions can be expressed in the form

' = �u+ �E2u+ Ei"(s) + Ej"(t);
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where u and "(x) are solutions of (25) given by (9) and Lemma 2 respectively, and
�; �; s; t; i and j are given by (17). By means of this general solution, we are able to
identify a large number of solutions of (25) as translations of some other solutions as
in Corollary 1, and then show that all solutions of (25) have prime periods 1; 4; 6 and
12:
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