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Abstract

In this paper, the local Hermitian and skew-Hermitian splitting (LHSS) it-
eration method and the modi�ed LHSS (MLHSS) iteration method for solving
singular generalized saddle point problems were investigated. When A is non-
Hermitian positive de�nite and the Hermitian part of A is dominant, the semi-
convergence conditions are given, which generalize some results of Jiang and Cao
for the nonsingular generalized saddle point problems to the singular generalized
saddle point problems.

1 Introduction

We consider the following 2� 2 block linear systems of the form:

Au =
�
A B
B� 0

��
x
y

�
=

�
f
g

�
= b; (1)

where A 2 Cm�m is a positive de�nite matrix, B 2 Cm�n with rank B = r and
m > n, f 2 Cm and g 2 Cn are two given vectors, and B� is the conjugate transpose
of the matrix B. When r = n, the coe¢ cient matrix A is nonsingular and the linear
systems (1) have a unique solution. When r < n, the coe¢ cient matrix A is singular,
under this case, we assume that the linear systems (1) are consistent, i.e., b 2 R(A),
the range of A. When A is non-Hermitian positive de�nite or Hermitian positive
de�nite, respectively, the linear systems (1) are referred to as generalized saddle point
problems or saddle point problems, which are important and arise in a large number of
scienti�c and engineering applications, such as the �eld of computational �uid dynamics
[2], constrained and weighted least squares [3], interior point methods in constrained
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optimization [4], mixed �nite element approximations of elliptic partial di¤erential
equations [5]. See [1] for a comprehensive survey.
In order to solve the linear system (1) with iterative method, based on the matrix

splitting, the coe¢ cient matrix A can be written as

A =M �N; (2)

where M 2 C(m+n)�(m+n) is a nonsingular matrix. Then the associated stationary
iterative scheme for solving the systems (1) can be described as follows

uk+1 = Tuk + c; k = 0; 1; 2; � � � (3)

where u0 2 Cm+n is an initial guess, c = M�1b, and T = M�1N is the iteration
matrix. It is well known that for nonsingular (singular) systems the iterative method
(3) is convergent (semi-convergent) if and only if T is a convergent (semi-convergent)
matrix. On the semi-convergence of the iterative methods for general singular linear
systems, one can see [12, 13, 29, 30, 32, 33, 34].
In recent years, when A is Hermitian positive de�nite and B is of full column rank, a

large amount of work have been developed to solve the linear system (1), such as Uzawa
type methods [6, 9, 14, 15, 16, 25, 27, 28], HSS iteration methods [17, 18, 19, 20, 21],
preconditioned Krylov subspace iteration methods [7, 8]. When A is non-Hermitian
positive de�nite, B is of full column rank, iterative methods have also been studied in
[10, 11, 22, 23, 26, 31]. For a broad overview of the numerical solution of linear systems
(1), one can see [1] for more details. In most cases, the matrix B is of full column
rank in scienti�c computing and engineering applications, but not always. If r < n,
the linear systems (1) become the singular saddle point problems. When the linear
systems (1) are consistent, Zheng, Bai and Yang [24] show that the GSOR method is
semi-convergent with A symmetric positive de�nite.
Recently, Jiang and Cao [31] presented a local Hermitian and skew-Hermitian split-

ting (LHSS) iteration method and a modi�ed LHSS (MLHSS) iteration method for
solving nonsingular systems (1). When A is non-Hermitian positive de�nite and the
Hermitian part of A is dominant, some convergence conditions for these methods are
given under suitable preconditioners.
In this paper, we further investigate the LHSS and MLHSS iteration methods for

solving singular linear systems (1). When A is non-Hermitian positive de�nite and the
Hermitian part of A is dominant, the semi-convergence conditions are proposed, which
generalize some results of Jiang and Cao [31] for the nonsingular generalized saddle
point problems to the singular generalized saddle point problems.

2 Semi-Convergence of the LHSS and MLHSS Iter-
ation Methods

Denote �(A) as the spectral radius of a square matrix A, �max(W ) and �min(W ) are
the maximum and the minimum eigenvalues of an Hermitian positive de�nite matrix
W , respectively. I is the identity matrix with appropriate dimension. H = 1

2 (A+A
�)

and S = 1
2 (A�A

�) are the Hermitian and the skew-Hermitian parts of A, respectively.
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Before the semi-convergence of the LHSS and MLHSS iteration methods for singular
systems (1) are given, we �rst review the LHSS and MLHSS iteration methods proposed
in [31] and give a lemma for latter use.
Method 2.1 ([31] LHSS Iteration Method). Assume that Q2 2 Cn�n is an Hermitian

positive de�nite matrix, for initial vectors x0 2 Cm and y0 2 Cn, the sequence fxk; ykg
is de�ned for k = 1; 2; � � � by�

xk+1 = xk +H
�1(f � (Axk +Byk));

yk+1 = yk +Q
�1
2 (B�xk+1 � g):

(4)

Method 2.2 ([31] MLHSS Iteration Method). Assume that Q1 2 Cm�m is an Her-
mitian positive semi-de�nite matrix and Q2 2 Cn�n is an Hermitian positive de�nite
matrix, for initial vectors x0 2 Cm and y0 2 Cn, the sequence fxk; ykg is de�ned for
k = 1; 2; � � � by �

xk+1 = xk + (Q1 +H)
�1(f � (Axk +Byk));

yk+1 = yk +Q
�1
2 (B�xk+1 � g):

(5)

In fact, the LHSS method is the special case of the MLHSS method, and the above
two methods are special cases of the inexact Uzawa method [25] when A is Hermitian
positive de�nite matrix. The generalized inexact Uzawa method is proposed in [28]
when A is the Hermitian positive de�nite matrix, which is the generalization of the
inexact Uzawa method [25]. For the non-Hermitian positive de�nite matrix A, the
generalized inexact Uzawa method is proposed in [31] as follows:
Method 2.3 ([31] Generalized Inexact Uzawa Method). Assume that Q1 2 Cm�m

is an Hermitian positive semi-de�nite matrix and Q2 2 Cn�n is an Hermitian positive
de�nite matrix, for initial vectors x0 2 Cm and y0 2 Cn, the sequence fxk; ykg is
de�ned for k = 1; 2; � � � by�

xk+1 = xk + (Q1 +H)
�1(f � (Axk +Byk));

yk+1 = yk +Q
�1
2 ((1� t)B�xk+1 + tB�xk � g):

(6)

where t 2 R is a relaxation factor.
In fact, considering the following matrix splitting:�

A B
�B� 0

�
=

�
Q1 +H 0
(t� 1)B� Q2

�
�
�
Q1 � S �B
tB� Q2

�
;

the above generalized inexact Uzawa method (6) can be regarded as the following
iterative method for solving system (1)�

Q1 +H 0
(t� 1)B� Q2

��
xk+1
yk+1

�
=

�
Q1 � S �B
tB� Q2

��
xk
yk

�
+

�
f
�g

�
; (7)

and the corresponding iteration matrix is

Tt =

�
Q1 +H 0
(t� 1)B� Q2

��1�
Q1 � S �B
tB� Q2

�
=

�
T11 T12
T21 T22

�
=

�
(Q1 +H)

�1(Q1 � S) �(Q1 +H)�1B
T21 In � (1� t)Q�12 B�(Q1 +H)

�1B

�
(8)
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with T21 = Q
�1
2 B�(Q1 +H)

�1(Q1 � S) + tQ�12 B�A. Hence, the iteration matrices of
LHSS method and MLHSS method allow the following descriptions

T1 =

�
�H�1S �H�1B

�Q�12 B�H�1S In �Q�12 B�H�1B

�
(9)

and

T2 =

�
(Q1 +H)

�1(Q1 � S) �(Q1 +H)�1B
Q�12 B�(Q1 +H)

�1(Q1 � S) In �Q�12 B�(Q1 +H)
�1B

�
; (10)

respectively.
For the following 2� 2 partitioned matrix, its semi-convergence is described by the

following lemma, see [24, 30].

LEMMA 2.1 ([24, 30]). Let R 2 Cl�l with positive integers l. Then the partitioned
matrix

T =

�
R 0
L I

�
is semi-convergent if and only if either of the following conditions holds true:
(1) L = 0 and R is semi-convergent;
(2) �(R) < 1.

It is worth pointing out that the convergence condition of Theorem 2.2 in [31] is
a su¢ cient and necessary condition. Using the analogous proof in [24] and the same
method in [31] for nonsingular systems (1), we will prove some analogous results on
the semi-convergence for singular systems (1).

THEOREM 2.1. Assume that r < n, A is a non-Hermitian matrix with the positive-
de�nite Hermitian partH = 1

2 (A+A
�) and the skew-Hermitian part S = 1

2 (A�A
�), i is

the imaginary unit. Suppose that [u�; v�]� is an eigenvector according to an eigenvalue
(6= 1) of the iteration matrix T2 of MLHSS method. Denote by

a =
u�Hu

u�u
; �b = u�i � Su

u�u
; c =

u�BQ�12 B�u

u�u
; d =

u�Q1u

u�u
:

Then the MLHSS iteration method (5) is semi-convergent to a solution x of the singular
systems (1) if and only if a; b; c and d satisfy the following condition:

c <
2a3 + 4a2d� 2ab2

a2 + b2
: (11)

PROOF. Let B = U(Br; 0)V
� be the singular value decomposition of B, Br =

(�r; 0)
T 2 Rm�r with �r = diag(�1; �2; :::; �r), U; V are unitary matrices. Then

P =

�
U 0
0 V

�
is an (m + n)-by-(m + n) unitary matrix. De�ne cT2 = P �T2P , the eigenvectors ofcT2 are [û�; v̂�]�, then the matrix cT2 has the same eigenvalues with matrix T2, and
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[û�; v̂�]� = P �[u�; v�]�. Hence, we only need to demonstrate the semi-convergence of
the matrix cT2.
Let bA = U�AU; bH = U�HU; bS = U�SU; cQ1 = U�Q1U; bB = U�BV and cQ2 =

V �Q2V . Then it holds that bB = (Br; 0) and
cQ2�1 = � V �1 Q

�1
2 V1 V �1 Q

�1
2 V2

V �2 Q
�1
2 V1 V �2 Q

�1
2 V2

�
with appropriate partitioned matrix V = (V1; V2). By simple computation, we have

cT2 =  bR 0bL In�r

!

where

bR =  (cQ1 + bH)�1(cQ1 � bS) �(cQ1 + bH)�1Br
V �1 Q

�1
2 V1B

�
r (cQ1 + bH)�1(cQ1 � bS) Ir � V �1 Q�12 V1B

�
r (cQ1 + bH)�1Br

!

and

bL = �V �2 Q�12 V1B
�
r (cQ1 + bH)�1(cQ1 � bS); �V �2 Q�12 V1B

�
r (cQ1 + bH)�1Br� :

As bL 6= 0, from Lemma 2.1 we know that the matrix bT is semi-convergent if and only
if �( bR) < 1.
When the MLHSS method (5) applied to solve the following nonsingular generalized

saddle point problems � bA Br
B�r 0

�� bxby
�
=

� bfbg
�

(12)

with the preconditioning matrix cQ1 and Q = (V �1 Q
�1
2 V1)

�1, and vectors by; bg 2 Rr,
then the iterative matrix of the MLHSS method is bR. From Theorem 2.2 of [31], we
know that �( bR) < 1 if and only if

ĉ <
2â3 + 4â2d̂� 2âb̂2

â2 + b̂2
; (13)

with

â =
û� bHû
û�û

; �b̂ = û�i � bSû
û�û

; ĉ =
û� bBrQ�1 bB�r û

û�û
; d̂ =

û�cQ1û
û�û

:

Note that the condition (13) is equivalent to the condition (11). By the above
analysis, the proof is completed.

REMARK 2.1. In fact, Theorem 2.1 can be regarded as an extension of Theorem
2.2 in [31].

When Q1 = 0, the MLHSS iteration method becomes the LHSS iteration method.
Hence, the following Theorem gives a description on the semi-convergence of the LHSS
method.



Li et al. 87

THEOREM 2.2. Assume that r < n, A is a non-Hermitian matrix with the positive-
de�nite Hermitian partH = 1

2 (A+A
�) and the skew-Hermitian part S = 1

2 (A�A
�), i is

the imaginary unit. Suppose that [u�; v�]� is an eigenvector according to an eigenvalue
(6= 1) of the iteration matrix T1 of LHSS method. Denote by

a =
u�Hu

u�u
; �b = u�i � Su

u�u
; c =

u�BQ�12 B�u

u�u
:

Then the LHSS iteration method (4) is semi-convergent to a solution x of the singular
systems (1) if and only if a; b and c satisfy the following condition:

c <
2a(a2 � b2)
a2 + b2

: (14)

For the real case, there are better results about LHSS method (4) and MLHSS
method (5), which are summarized in the following corollaries.

COROLLARY 2.1. Assume that r < n, A is a non-symmetric matrix with the
positive-de�nite symmetric part H = 1

2 (A + A
T ) and the skew-symmetric part S =

1
2 (A � A

T ). Let Q2 be symmetric positive de�nite matrix. Then the LHSS iteration
method (4) is semi-convergent to a solution x of the singular systems (1) if and only if
2H �BQ�12 BT is positive de�nite.

COROLLARY 2.2. Under the assumptions of Corollary 2.1, then the LHSS iteration
method is semi-convergent if �max(BQ

�1
2 BT ) < 2�min(H).

COROLLARY 2.3. Under the assumptions of Corollary 2.1, if Q2 = 1
� I, then the

LHSS iteration method is semi-convergent when 0 < � < 2�min(H)
�max(BTB)

.

COROLLARY 2.4. Assume that r < n, A is a non-symmetric matrix with the
positive-de�nite symmetric part H = 1

2 (A + A
T ) and the skew-symmetric part S =

1
2 (A�A

T ). Let Q1 be symmetric positive semi-de�nite and Q2 be symmetric positive
de�nite. Then the MLHSS iteration method (5) is semi-convergent to a solution x of
the singular systems (1) if and only if 2H + 4Q1 �BQ�12 BT is positive de�nite.

COROLLARY 2.5. Under the assumptions of Corollary 2.4, then the MLHSS iter-
ation method is semi-convergent if �max(BQ

�1
2 BT ) < 2�min(H) + 4�min(Q1).

COROLLARY 2.6. Under the assumptions of Corollary 2.4, if Q1 = �I, Q2 = 1
� I,

then the MLHSS iteration method is semi-convergent when 0 < � < 2�min(H)+4�
�max(BTB)

.

When the generalized inexact Uzawa method (6) is applied to solve the real singular
systems (1), the following Theorem describes the semi-convergence of the generalized
inexact Uzawa method (6).

THEOREM 2.3. Assume that r < n, A is a non-symmetric matrix with the positive-
de�nite symmetric part H = 1

2 (A+A
T ) and the skew-symmetric part S = 1

2 (A�A
T ).

Suppose that [uT ; vT ]T is an eigenvector according to an eigenvalue of the iteration
matrix Tt of generalized inexact Uzawa method. Denote by

a =
uTHu

uTu
; c =

uTBQ�12 BTu

uTu
; d =

uTQ1u

uTu
:
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Then the generalized inexact Uzawa method (6) is semi-convergent to a solution x of
the singular systems (1) if and only if a; c; d and t satisfy the following condition:

a� tc > 0 and 2a+ 4d+ (2t� 1)c > 0: (15)

COROLLARY 2.7. Under the assumptions of Theorem 2.3, the generalized inexact
Uzawa method (6) is semi-convergent if and only if

H � tBQ�12 BT and 2H + 4Q1 + (2t� 1)BQ�12 BT

are positive de�nite.

3 Conclusion

In this paper, we further investigate the LHSS and MLHSS iteration methods presented
in [31] for solving singular linear systems (1). When A is non-Hermitian positive def-
inite and the Hermitian part of A is dominant, the semi-convergence conditions are
proposed, which generalize some results of Jiang and Cao [31] for the nonsingular gen-
eralized saddle point systems to the generalized singular saddle point systems.
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