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Abstract

The labeling problem considered in this paper is called face-labeling of the
maximal planar or triangular planar graphs in connection with the notion of the
consistency. Several triangular planar and maximal planar graphs such as the
wheels, the fans etc. are considered.

1 Introduction

Graph labeling problems are quite di¤erent than the graph coloring problems [5] but
the author has an unproved claim that every coloring problem can be expressed as an
labeling problem.
In this paper, we will consider only consistency of the face labelings (f -labeling in

short) and give several results on special triangular planar graphs such as the fans,
wheels, triangular chains as well as maximal planar graphs. We will also consider
the inconsistency of f -labeling for these graphs which eventually enable us to give an
face-labeling algorithm for any maximal planar graph. According to the author this
observation should be counted extraordinarily coincidental, partly because of his long
struggle with the notorious graceful tree conjecture [15],[16]. In the next section, after
giving some basic results for simple triangular graphs, in particular we investigate in
detail the f -labeling of the fans, the wheels and triangular chains. The importance
of these graphical structures comes from the fact that, they can be considered as the
basic building blocks of the maximal planar graphs after the triangle. In Section 3
we consider a decomposition algorithm for the maximal planar graphs into fans and
wheels. The last section deals with the consistency of f -labeling of maximal planar
graphs based on the decompositions given in the previous section.

2 Basic Results

Let 4 denote a triangle (a cycle of length three). Let 1; 2; 3; 4 be the possible labels
corresponding to the di¤erent colors. Then by considering all possible vertex labelings
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2 Face Labeling of Maximal Graphs

of a triangle 4 we get the following table:

Face Labels x6 = 6 x7 = 7 x8 = 8 x9 = 9
Consistent labels f1; 2; 3g� (1; 2; 4g� f1; 3; 4g� (2; 3; 4g�
Inconsistent labels f1; 1; 4g� f2; 2; 3g� f2; 2; 4g� f3; 3; 3g�
Inconsistent labels f2; 2; 2g� f1; 3; 3g� f2; 3; 3g� f1; 4; 4g�

The �rst row in the table corresponds to the proper coloring of the triangle while
the other rows are not. In notation, we will denote face labels by xi; xj ; xk; xl and drop
the symbols f and 4 whenever the context permits and denote the induced vertex
labels by yi; yj ; yk; yl, where indices of x�s are the actual face labels 6; 7; 8; 9 and the
indices of y�s are the actual vertex labels 1; 2; 3; 4.

DEFINITION 1. A labelling f : F ! f6; 7; 8; 9gf of the faces of a maximal planar
graph G is called consistent if for every triangle 4 of G there exists induced vertex
labelings in the form x6 = f1; 2; 3gv; x7 = f1; 2; 4gv; x8 = f1; 3; 4gv; x9 = f2; 3; 4gv.
That is, if y1; y2; y3 are the vertices of a triangle 4 then ffy1; y2; y3g4 = fv(y1) +
fv(y2)+fv(y3) = 6; 7; 8;or 9, where f(xi) = ffy1;y2; y3g is the face label of the triangle
4: Otherwise, the face labeling f is called inconsistent.
With the above notations for consistent face labelings of a triangle we can write:

fx6g \ fx7g = fy1; y2g
fx6g \ fx8g = fy1; y3g
fx6g \ fx9g = fy2; y3g
fx7g \ fx8g = fy1; y4g
fx7g \ fx9g = fy2; y4g
fx8g \ fx9g = fy3; y4g
fx6g \ fx7g \ fx8g = fy1g
fx6g \ fx7g \ fx9g = fy2g
fx6g \ fx8g \ fx9g = fy3g
fx7g \ fx8g \ fx9g = fy4g and
fx6g \ fx7g \ fx8g \ fx9g = ;:
The last term is important since it indicates that no set of four triangles with a

common vertex v has a consistent the face labeling if all possible face labels x6; x7; x8; x9
have been assigned to the triangles. In Figure 1, we illustrate several consistent and in
Figure 2 inconsistent face labelings of simple triangular graphs.

We begin with a simple lemma.

LEMMA 1. Let G1 and G2 be any two triangular planar graphs with consistent
f -labelings f1 and f2. Then G1 [G2 has a consistent labeling f1 [ f2.
PROOF. Assume that, the union of the two triangular graphs G1 and G2 are to

be joined over a common edge e. But for any face labelings of two triangles we have
xi \ xj = fyp; yqg; i; j = 6; 7; 8; 9 and p 6= q; p; q = 1; 2; 3; 4: Thus the union of two
consistent triangular planar graphs in this way results in another consistent triangular
graph with the face labeling f = f1 [ f2:
It can be easily veri�ed that if the common edges between the two overlapped

triangular planar graphs is more than a single edge then the union of consistent face
labelings may not result in another consistent face labeling.
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Figure 3: Pyramid Graphs

LEMMA 2. Any face labeling of the pyramid triangular graph with four triangles
shown in Figure 3(a) is consistent.

PROOF. Let ti be the inner triangle and ta; tb; tc be the triangle neighbor ti of the
pyramid graph. Let us label ti with xi; i 2 f6; 7; 8; 9g: The corner vertices not incident
at ti are free and any face label can be assigned to the triangles ta; tb and tc due to
the fact that xi \ xj is consistent for any face labeling. Therefore the overall pyramid
graph is consistent for any face labeling.

LEMMA 3. Consider any planar drawing of K4: Then the only consistent f -
labelings of K4 for which the facial faces are labelled by xi; xj ; xk; i 6= j 6= k; i; j; k 2
f6; 7; 8; 9g and the outerface label is xl = ya + yb + yc, where ya; yb; yc are the induced
vertex labels of the outerboundary face.

PROOF. For any planar drawing of K4 there are exactly four faces including the
outerface. Since each induced vertex label yi ,1 � i � 4 used for a vertex exactly once
and any two triangles have exactly one edge in common there exists only one consistent
f -labeling for which all face labels are di¤erent.

LEMMA 4. A planar triangular graph G is consistent under single face label i¤ it
is 3�colorable.
PROOF. If G is 3-colorable then for each triangle we have the same induced vertex

labels yi; yj ; yk; i 6= j 6= k. Now assume that G is not 3-colorable. By the four color
theorem [1] there must be two triangles for which two vertex labels are di¤erent. Hence
G is not consistent under single face label when it is four colorable.

We can ask whether any triangular graph can be labeled with less than four distinct
face labels. The face labeling of the maximal planar graph shown in Figure 3(b) requires
all four face labels to be used while for the maximal planar graph shown in Figure 3(a)
a single face label (6 in the �gure) is enough for a consistent face labeling.
The fan Fn (n � 2) is obtained by joining all vertices of the path Pn to a further

vertex called the center, and contains n + 1 vertices and 2n � 1 edges. The wheel
Wn (n � 3) is obtained by joining all vertices of the cycle Cn to the center, and contains
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n + 1 vertices and 2n edges. The triangular path Tp is consisted of k triangles in the
form of a path in which except the �rst and last triangles all other triangles pair wise
share common edges. Similarly the triangular chain Tc can be de�ned by allowing the
fans as subgraphs in the triangular path. In Figures 1 and 2 we illustrate consistent
and inconsistent face labelings of the several simple triangular graphs.

THEOREM 1. The fan Fn (and the wheel Wn) has an consistent f -labeling i¤ it
does not contain a subsequences of the face labels in the forms
(a) ( i 6= j); :::xixjxj :::xjxjxi:::; where the number of xj�s is odd
(b) (i 6= j 6= k); :::xixjxj :::xjxjxk:::; where the number of xj�s is even and
(c) the complete set xi; xj ; xk; xl; (i 6= j 6= k 6= l) is not assigned to the faces of the

Fn.

PROOF. The proof is only given for the fans. For wheels similar lines follow.
Necessity of (c) is clear if we consider xi \ xj \ xk \ xl = ;: That is, let v be the

vertex of Fn such that Fn � v is a path. Assume that face labels xi; xj ; xk; xl have
been assigned to the some faces of Fn and the labeling is consistent. W.l.o.g. let
xi = x6 = fy1;y2; y3g; xj = x7 = fy1;y2; y4g; xk = x8 = fy1; y3; y4g and xl = x9 =
fy2; y3; y4g: Since v is common for these triangles, for consistent face labeling mutual
intersections of x�s should not be empty. Next consider the subsequence xixj :::xjxi
as a partial face labeling of Fn: If we start with the face label of xi then the induced
vertex label of the vertex v is determined together with the vertex label, say yi; 1 �
i � 4; on the path that adjacent to the �rst triangle, say from the left, xj : Hence
the unlabeled vertex of that triangle is uniquely determined. In order to complete
partial face labeling, the sequence consistently, the rightmost triangle must have the
induced vertex label yi: But this is only possible if the number of triangles between
the �rst triangle xi and the last triangle xi is even. Now consider any subsequence
of face labels of Fn in the form :::xixjxj :::xjxk:::; (i 6= j 6= k) with even number
of xi face labels. Again for the consistency the common vertex v must receive the
induced vertex label xi \ xj \ xk = yp; p 2 f1; 2; 3; 4g:The remaining three vertex
labels, say yq; yr; ys, are pairwise elements of xi; xj and xk. That is we may write
xi = fypg [ fyq; yrg; xj = fypg [ fyq; ysg; xk = fypg [ fyr; ysg: On the other hand
we have assumed that the path Fn � v has even number of edges. In order to have
consistent face labeling we must have the following vertex labels on the vertices of this
path: ...yr; yq; ys; yq; :::; yq; ys; yr:::. But this is only possible if the number yq; ys pairs
is odd.
For su¢ ciency, we will show that any other face labeling results in consistent induced

vertex labeling.
Let v be the central vertex and let P (x; y) be the path connecting degree two vertices

x and y of Fn. All other vertices of P (x; y) are of degree three.
Let S = fxi1 ; xi2 ; :::; xikg be the sequence of face labels of Fn satisfying the condi-

tions (a),(b) and (c). W.l.o.g. assume also that S is only consisted of x6; x7 and x8�s
(condition (c)). Hence vertex label of v is f(v) = x6\x7\x8 = 1. Let us �rst consider
the �rst two face labels from the left side in S.
fxi1 ; xi2g = ffx6; x6g; fx6; x7g; fx6; x8g; fx7; x6g; fx7; x7g; fx7; x8g; fx8; x8g;
fx8; x7g; fx8; x6gg
The induced vertex label sets for each face label pairs, respectively, are:
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fx6; x6g , fy2; y3; y2gorfy3; y2; y3g; fx6; x7g , fy3; y2; y4g; fx6; x8g , fy2; y3; y4g;
fx7; x6g , fy4; y2; y3g; fx7; x7g , fy2; y4; y2g or fy4; y2; y4g; fx7; x8g , fy2; y4; y3g
fx8; x6g , fy4; y3; y2g; fx8; x7g , fy3; y4; y2g; fx8; x8g , fy4; y3; y4g or fy3; y4; y3g:
Now we can augment the above pairs of face labels to the triples by adding new face

label xi3 2 fx6; x7; x8g e.g., if xi3 = x6 then except the second and the third (condition
(a)) all other pairs augmented consistently into the triple face labels. Clearly we can
obtain any consistent face labeling of Fn in this way.

LEMMA 5. Let Wn be the wheel graph with (n + 1) vertices. Then for any
consistent f -labeling the maximum number of faces labeled by xi is n if n =even and
(n� 2) otherwise.
PROOF. If n is even we can assign any �xed face label xi 2 f6; 7; 8; 9g to all faces

of the Wn. Assume that, we have selected xi = 6. Then the induced vertex label for
the central vertex of Wn can be any label from the set f1; 2; 3g: The other two vertex
labels, say 2; 3; if 1 is assigned to the center, are alternatingly assigned to the spoke
vertices in which no two adjacent labels are same. If n is odd we can still do the same
thing as above except for the last two faces. We have to use face labels other than
6. Otherwise inconsistency have occurred. If we label these faces with di¤erent labels
from f7; 8; 9g�s then by Theorem 1 we create an inconsistent subsequence in the form
xixj :::xjxk with i 6= j 6= k; and odd number of xi�s . Therefore we use any �xed
label from f7; 8; 9g for the remaining last two unlabeled faces of Wn. Here if the three
distinct face labels xi; xj ; xk are used in Wn then the central vertex of Wn must be
labeled with xi \ xj \ xk:

3 Face Labeling of Triangular Graphs

In order to show the di¢ culty of �nding consistent f -labeling of a triangular graph,
consider the triangular graph consisted of three complete subgraphs with four vertices
(K4) which cyclically pairwise sharing common edges shown in Figure 4 together with
a consistent face labeling. The subgraph induces by the faces labeled xj ; xl; xk is a
wheel W7 (shown in bold lines in the �gure): If we label the faces of W7 with all xi�s
we would obtain another consistent face labeling of W7 but cannot complete the rest of
the graph consistently. Another di¢ culty is the possibility of creating inconsistent face
label on a inner face which has not contained in any wheel or fan subgraphs. In order
to detect situations like this beforehand, we need an algorithm to list triangles which
completely depends on its boundary subgraphs and give priority to these triangles in
the face labeling algorithm. Let us denote by N(v) the neighborhood of the vertex
(excluding the vertex v).

LEMMA 6. If G is a maximal planar graph then the neighborhood N(v) of any
vertex v 2 V (G) induces a wheel subgraph.
PROOF. Let us assume that there exists an vertex v 2 V (G) for which N(v) is

not induce an spanning cycle C of length jN(v)j. Let k = jN(v)j � 1 and vk+1 is not
contained in the spanning cycle C. The vertex vk+1 must adjacent to another vertex,
say v1 2 N(v); other than v. Now we can embed the planar graph G so that the cycle
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fvk+1; v; v1; vkg without a chord becomes boundary of the outerface which contradicts
to the maximality of G: Therefore (vk+1; vk) 2 E(G) which shows jN(v)j = k:

Base on the existing proofs of the four color theorem we can safely state [4],[7]:

THEOREM 2. Every maximal planar graph has a consistent f -labeling.

In order to attempt to give a di¤erent proof to the above theorem, we need �rstly
a decomposition and secondly an f -labeling algorithms that assures the consistency of
face labeling.

DEFINITION 2. Let D(G) be a decomposition of a maximal planar graph G
into wheel subgraphs Wi1 ;Wi2 ; :::;Wik ; ij > 3; j = 1; 2; :::; k and into fan subgraphs
Fi1; Fi2 ; :::; Fik ; ij > 4; j = 1; 2; :::; k: A triangle (face) of G is called a black hole if its
edges contained in the three di¤erent wheel or fan subgraphs in D(G):

In Fig.5 we illustrate the notion of black holes. The cycles h1 = fc; d; gg; h2 =
fa; d; eg; h3 = fe; g; lg; h4 = fa; c; lg are the black holes of the maximal planar graph
since they have common edges with the wheel W5(K4) subgraphs induce by the vertex
sets fa; b; c; dg; fd; f; e; gg; fc; g; h; lg.
Note that, the last three black holes have common edges with the exterior face of the

graph, i.e., fa; e; lg: The following is our naive algorithm for the consistent f -labeling
of a maximal planar graph G. Assume that, G is drawn on the plane without crossing
any edges.
� Step 1. Find the decomposition D(G) of G into the wheel (and fan) subgraphs.
� Step 2. Based on the decomposition D(G) list all black holes h1; h2; :::; hk:

By using Theorem 5 and avoiding the traps around the holes, label all other faces
other than h1; h2; :::; hk:
The trap occurs at the hole hi if the face labeled adjacent hi creates inconsistent

face label on the hole.
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4 Conclusion

Saaty has listed some 29 equivalent formulations of the famous four color theorem
[6],[14] . After so many formulations, it is quite strange that the existing solutions to
this problem is almost unique in the sense of methodology, i.e., mainly on the nonex-
istence of an counterexample and in the technique used in the proof of the four color
theorem, e.g., con�gurations and reducibility, discharging, and a coloring algorithm [1]-
[4],[7],[8] (e.g., we may refer the historical developments for the proofs in [9],[10]-[13]).
Even the solvers of this problem implicitly disclose their feelings about the dissatisfac-
tion of forcibly the extensive use of a computer [8]. Note that this is not due to the
use of an quadric or quadratic coloring algorithms but it is the use of the computer for
simply checking or veri�cations of the huge possibilities.
For example, let N = f1; 2; 3; 4g be the set of possible vertex labels. Consider the

vertex labeling f : V ! f1; 2; 3; 4g of an planar graph G such that then the induced
edge labels calculated as f(x) � f(y) we require no zero edge label i.e., f(x) 6= f(y),
for all (x; y) 2 E(G). Clearly, this is exactly the same thing as the 4CP formulation,
we simply used integers 1; 2; 3; 4 instead of the colors, say blue, red, green and yellow.
It is also clear that this kind of graph labeling would not give further possibilities to
investigate the four-color problem since the knowledge remain local. That is the rule
of proper coloring of two adjacent vertices remain same by assigning to di¤erent vertex
labels. The graph theoretical version of the 4CT:

THEOREM 3. The vertices of every maximal planar graph with at least four
vertices can be colored with at most four colors.

The key word in the above statement is the word �maximal�that enable us to give
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quite di¤erent labeling equivalent of the four color problem. Maximal planar graphs
are such that addition of any other edges results in an nonplanar graph. The number
of the edges in any maximal planar graph with n vertices is 3n � 6. Furthermore the
(facial) faces (including the in�nite outerface) are all triangles e.g., cycles of length
three, where a facial triangle is a triangle in G which is the boundary of some face of
G. Another motivation to the face labeling considered is due to the simple proof of the
following:

THEOREM 4. The faces of every maximal planar graph are three colorable except
the complete graph on four vertices.

The proof of this theorem is that, the dual of a maximal planar graph is 3-regular.
By Brooks�Theorem, it is 3-colorable if it is not a clique1 . Again if we assume the
truth value of the above theorem a priori [1]-[4],[7],[8],[14] there is nothing to give and
nothing to prove, since all maximal planar graphs have at least one consistent face
labeling. However, our hope, is to open an avenue for a possible proof of the well-
known four color theorem without using a computer. We have not yet attempted to
the algorithmic solution of the four color problem but the formulation of the problem
in terms of face labeling enable us to learn global property of the coloring of maximal
planar graphs. That is, it is equally important to know under what conditions the
subgraphs of the maximal planar graph would not have consistent face labeling. We
conjectured, that the notion of face labeling is su¢ cient to give a proof of theorem
(4CT) without using a computer.
In Figure 6, we have selected the triangulation given by R. Thomas in [14] together

with the f -labeling. The f -labeling is based on consistent face labeling of every pairs

1The proof has been provided by Douglas West in response to the question via the GRAPHNET.
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Figure 7: Detecting Inconsistent Subsequence Face Labels 7; 6; 7

of all wheel subgraphs by considering the result of Theorem 1. Note that in the trian-
gulation of Figure 6 there is no black holes. Certainly, the order of the selection of the
wheel subgraphs is another aspect of the face labeling algorithm (ordering of the wheels
have been shown bold edges with arrows indicating the center of the respective wheel
subgraph of the maximal planar graph). We choose the inner and smallest sized wheel
�rst and continue next to the face labeling of the neighbor wheel subgraphs based on
the direction of directed edges. Actually the directed edges in the graph constitute
topologically in the shape of a spiral directed path. In this way we guarantee that the
unlabeled wheel subgraph en route will have adjacencies with the minimum number of
the previously labeled wheels. However care must be given at the current face label-
ing of the wheel subgraph. For example, if we consistently label the faces of the �rst
and second wheel subgraphs induce by the vertices W (c1) = fc1; c2; c3; c4; c5; c6g and
W (c2) = fc2; c1; c3; c8; c7; c6g as shown in Figure7 we would create inconsistent face
labeling on the faces of the fan subgraph induces by the vertices c1; c2; c8; c3; c4; i.e.,
the subsequence 7; 6; 7 (see Theorem 1).
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