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Abstract

We study the concavity of the first NLPC transformation for symmetric uni-

modal distributions on bounded domains. We deduce a comparison principle

based on the variances of the first NLPC and show a possible application in

constructing goodness-of-fit tests.

1 Introduction

Let X be an absolutely continuous random variable (r.v.) with zero mean, finite vari-
ance and density fX having support the closure D of an interval D (Υ (D) will denote
the set of these r.v.s). As introduced in [6], the first nonlinear principal component
(NLPC) of X, if it exists, is the r.v. ϕ1 (X) where ϕ1 is defined as

ϕ1 = arg max
u∈Ẇ1,2

X \{0}

E

[
u (X)

2
](

E

[
u′ (X)

2
])−1

. (1)

Here Ẇ 1,2
X = {u ∈ L̇2

X : u′ ∈ L2
X} and L̇2

X (resp. L2
X) is the separable Hilbert space

of centered (resp. not necessarily centered), square integrable functions u : D → R.
We will assume (1/fX) ∈ L1

loc (D), thus Ẇ 1,2
X is Hilbert too. By (1) ϕ1 realizes the

equality in the Poincaré inequality (see e.g. [2], [3], [4], [5], [7], [8]):

∃C > 0 : Var [u(X)] ≤ C E
[
(u′(X))2

]
(2)

and the variance λ1 of ϕ1 (X) coincides with the optimal Poincaré constant C. Some
properties of ϕ1 are collected in the following lemma (see [6])

LEMMA 1. Suppose X ∈ Υ(D) admits NLPCs and let ϕ1 be the first NLPC
transformation. The following conclusions hold:
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120 Concavity of NLPC Transformation

(i) if fX is even, then ϕ1 is odd;
(ii) if fX ∈ C1 (D), then ϕ1 is strictly monotone;

(iii) if ϕ1 ∈ C2 (D) then fX = g/
∫

D
g, where g (x) = (ϕ′

1 (x))
−1

exp
{
−ξ1

∫
ϕ1/ϕ′

1

}

and ξ1 = 1/λ1.

Here and in the following Ck (D) denotes as usual the set of k ≥ 0 times continuously
differentiable real functions defined on D.

Note how statement (iii) highlights the central role of ϕ1 in characterizing the
distribution of X, justifying the interest in deepening the knowledge of its properties.

Here we investigate which assumptions on fX guarantee that ϕ1 has just one change
of concavity in D. This behavior seems to be sufficiently general, as some examples in
[6] suggest; moreover, it is a crucial ingredient used in [10] to prove a characterization
of the uniform distribution among the unimodal symmetric distributions with bounded
support. This is the main reason why we settle our analysis in this framework.

We prove that, under sufficiently mild assumptions on the density fX , transforma-
tion ϕ1 effectively presents the above mentioned property. Furthermore, thanks to the
obtained results, we generalize the comparison result of [10] and show with an example
how a class of goodness-of-fit test can be based on this last result.

2 Main Results

We recall that ϕ1 is a weak solution, with ξ = ξ1 = λ−1
1 , of the Sturm-Liouville problem:






− (fXu′)
′
= ξfXu, in D

lim
x→a+

u′ (x) fX (x) = lim
x→b−

u′ (x) fX (x) = 0
(3)

that is ϕ1 ∈ Ẇ 1,2
X and E [ϕ′

1(X)h′(X)] = ξE [ϕ1(X)h(X)] for all h ∈ Ẇ 1,2
X , whereas ϕ1

is a strong solution of (3) if fXϕ′
1 ∈ C0(D) ∩C1(D), that is ϕ1 satisfies (3) pointwise.

We will assume, without loss of generality, D = (−1, 1) and X ∈ Υ(D) such that:
(H1) it admits first NLPC ϕ1;
(H2) its density fX ∈ C0[−1, 1] ∩ C1(−1, 1) is symmetric and unimodal at 0, with

f ′
X ≤ 0 on (0, 1).

For the sake of shortness we will denote by H (D) the set of such r.v.s.

PROPOSITION 1. Let X ∈ H (D) with fX ∈ C2 (−1, 1) and assume

A(x) := − d2

dx2
ln(fX(x)) − ξ1 x ∈ [0, 1) (4)

is such that (i) A (0) < 0; (ii) A has at most one zero in (0, 1) in which it changes
sign. Then ϕ1 is concave in [0, 1].

PROOF. By (H1) and (H2) ϕ1 is a strong solution of (3). Since fX ∈ C1(−1, 1)
we obtain ϕ1 ∈ C2(−1, 1); moreover by fX ∈ C2(−1, 1) and (3) and it follows ϕ1 ∈
C3(−1, 1). Differentiating in (3), we get

ϕ′′
1 (x) = −f ′

X(x)

fX(x)
ϕ′

1(x) − ξ1ϕ1(x), ∀x ∈ [0, 1). (5)
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Since f ′
X(0) = 0, ϕ1(0) = 0 and ϕ′

1 (0) > 0, we have ϕ′′
1 (0) = 0. Differentiating in (5)

we obtain

ϕ′′′
1 (x) = ϕ′

1(x)A(x) − ϕ′′
1(x)

d

dx
(ln(fX(x)) ∀x ∈ [0, 1), (6)

from which ϕ′′′
1 (0) = ϕ′

1(0)A (0) < 0. Thus ϕ′′
1 (x) < 0 in a right neighborhood of 0

(recall that ϕ′′
1 ∈ C0 (−1, 1)).

Assume first A (x) < 0 in (0, 1). Since ϕ′
1(x) > 0 in (−1, 1), if there exists x1 ∈ (0, 1)

such that ϕ′′
1(x1) = 0 from (6) it follows ϕ′′′

1 (x1) < 0, a contradiction; thus ϕ′′
1(x) < 0

in (0, 1) and we conclude.
Assume now that there exists (a unique) x ∈ (0, 1) such that A (x) = 0 and A(x) > 0
in (x, 1), hence

d2

dx2
ln(fX(x)) ≤ −ξ1 for all x ∈ [x, 1). (7)

We show first that
lim sup
x→1−

ϕ′′
1(x) < 0. (8)

If lim supx→1− −f ′
X(x)/f2

X(x) = c ∈ [0, +∞), since limx→1− fX(x)ϕ′
1(x) = 0, (8) easily

follows from (5).
Suppose lim supx→1− −f ′

X(x)/f2
X(x) = +∞. Condition (7) assures that the func-

tion f ′
X(x)/fX(x) is strictly decreasing in [x, 1), hence it exists limx→1− f ′

X(x)/fX(x) = α
with α ∈ [−∞, 0). With some computations one deduces limx→1− f2

X(x)/f ′
X(x) = 0.

Then, we get

lim sup
x→1−

−f ′
X (x)ϕ′

1(x)

fX(x)
= lim sup

x→1−

−ϕ′
1(x)fX(x)

f2
X(x)(f ′

X(x))−1
≤ lim sup

x→1−

−(ϕ′
1(x)fX(x))′

(f2
X (x)(f ′

X(x))−1)′

≤ lim sup
x→1−

ξ1ϕ1(x)

[
1 − d2

dx2
ln(fX(x))

(
d

dx
ln(fX(x)

)−2
]−1

≤ lim sup
x→1−

ξ1ϕ1(x)

[
1 + ξ1

(
d

dx
ln(fX(x)

)−2
]−1

< ξ1 lim
x→1−

ϕ1(x),

where again we use (7). By this, (8) follows.
Now suppose by contradiction that ϕ′′

1 changes sign in (0, 1) and let x1, x2 ∈ (0, 1),
with x1 < x2, be its “first and last” zeroes, respectively. By (6) and (8) we get

0 ≤ ϕ′′′
1 (x1) = ϕ′

1(x1)A (x1) and 0 ≥ ϕ′′′
1 (x2) = ϕ′

1(x2)A (x2) .

Since ϕ′
1(x) > 0 in (−1, 1), it must be A (x1) ≥ 0 and A (x2) ≤ 0. By this we deduce

that x1 ≥ x but this produces the contradiction A (x2) > 0.

The basic idea in the proof of Proposition 1 is to study the sign of the ϕ′′
1 expression

that can be deduced from (3). A direct inspection of this expression shows that if
f ′

X (x) > 0 for all x ∈ (0, 1), then ϕ1 is concave in (0, 1). This also tells us that the
concavity study of ϕ1 in the unimodal case presents all the main difficulties that one
could find in the multimodal one.
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Hypotheses (i) and (ii) of Proposition 1 requiring an a priori estimate of ξ1 are, in
general, difficult to handle. Here we state a sufficient condition for their validity.

PROPOSITION 2. Let X ∈ H (D) and suppose there exists n0 ≥ 4 (even) such
that fX is differentiable n0 times in (−1, 1), and

d3

dx3
ln(fX(0)) = · · · = dn0−1

dxn0−1
ln(fX(0)) = 0;

dn0

dxn0
ln(fX(0)) 6= 0.

If
d3

dx3
ln(fX(x)) < 0 in (0, 1), then ϕ1 is concave in [0, 1].

PROOF. We show that function A in (4) satisfies (i) and (ii) of Proposition 1.

The assumption
d3

dx3
ln(fX(x)) < 0 implies that the function A is strictly increasing in

(0, 1). This readily implies (ii) of Proposition 1.

To check (i), we assume by contradiction that A(0) ≥ 0. Thus, by the monotonicity
of A and from (5) in the proof of Proposition 1, the first NLPC ϕ1 associated to X
satisfies

if x1 ∈ (0, 1) : ϕ′′
1 (x1) = 0 ⇒ ϕ′′′

1 (x1) > 0. (9)

Furthermore, we have that ϕ′′
1(0) = 0 and lim supx→1− ϕ′′

1 (x) < 0.
If A (0) > 0, then ϕ′′′

1 (0) > 0 hence ϕ′′
1(x) > 0 in a right neighborhood of x = 0. Hence,

since lim supx→1− ϕ′′
1(x) < 0, (9) gives a contradiction.

Assume now that A (0) = 0, then ϕ′′′
1 (0) = 0. Differentiating in (6) we get ϕi

1 (0) = 0
for i = 2, ..., n0 and

ϕn0+1
1 (0) = ϕ′

1(0)A(n0−2)(0) = −ϕ′
1(0)

dn0

dxn0
ln(fX(x))(0) > 0,

where the fact that A(n0−2)(0) = − dn0

dxn0
ln(fX(x))(0) > 0 follows from the monotonic-

ity of A. We conclude that ϕ′′
1 (x) is positive in a left neighborhood of x = 0 and the

contradiction comes arguing as for the case A (0) > 0.

We present now two families of distributions to which Proposition 2 applies.

EXAMPLE 1. For the one parameter family of centered, scaled and symmetric
beta (cssβ (r)) on D = (−1, 1)

fX (x, r) = Kr

(
1 − x2

)r
r ∈ (0, +∞), Kr =

[∫ 1

−1

(
1 − x2

)r
dx

]−1

(10)

assumption (H1) has been tested in [6, Example 15] and (H2) holds. Some computa-
tions give for all x ∈ (0, 1)

d3

dx3
ln(fX (x, r)) =

−4rx(x2 + 3)

(1 − x2)3
< 0;

d4

dx4
ln(fX (x, r)) =

−12r
(
x4 + 6x2 + 1

)

(x2 − 1)4
6= 0.

Hence, Proposition 2 and, in turn, Proposition 1 applies.
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Another family of distributions to which Proposition 2 applies is the Generalized
Normal truncated distribution on D = (−1, 1):

fX(x) = Kme−x2m

, m ∈ N, m ≥ 2, Km > 0.

Here, (H1) follows from [6, Theorem 5] and (H2) holds.

Next example shows that the assumptions of Proposition 2 are not necessary.

EXAMPLE 2. Consider the “Logistic truncated distribution”:

fX(x) =
(e + 1) ex

(e − 1) (1 + ex)2
, x ∈ [−1, 1]. (11)

Since d3

dx3 ln(fX(x)) > 0, Proposition 2 does not apply. Anyway, as fX(1) 6= 0 and

ϕ1 ∈ Ẇ 1,2, it holds:

ξ−1
1 =

∫ 1

−1
ϕ2

1 (x) fX (x) dx
∫ 1

−1
(ϕ′

1)
2
(x)fX (x) dx

≤ fX (0)

fX(1)
max

u∈Ẇ1,2

∫ 1

−1
u2 (x) dx

∫ 1

−1
(u′)

2
(x) dx

=
fX (0)

fX(1)

4

π2

hence ξ1 ≥ eπ2/ (e + 1)
2
. In turn, this implies

A(0) = − d2

dx2
ln(fX(0)) − ξ1 ≤ 1

2
− eπ2

(e + 1)
2 < 0

and, jointly with the fact that A′(x) < 0 in (0, 1), it allows to apply Proposition 1.
Similarly one can treat the Standard Normal truncated distribution:

fX(x) = K e−x2/2, K > 0, x ∈ [−1, 1]

having zero third logarithmic derivative. Note that for the above distributions assump-
tion (H1) follows from [6, Theorem 5], while (H2) is easily verified.

Under the assumptions of Proposition 1 we are able to obtain a comparison principle
for unimodal symmetric distributions, extending a result obtained in [10] for the uni-
form one. We note that this result does not seem easily extendible to the asymmetric
case.

PROPOSITION 3. Let X and Y be in H (D). If X satisfies the assumptions of

Proposition 1, fX intersects fY once in (0, 1) and fX(0) > fY (0), then λfX

1 < λfY

1

where λfX

1 and λfY

1 are the variances of the first NLPC of X and Y , respectively.

REMARK 1. The hypothesis of Proposition 3 can be relaxed assuming that fX(x) ≥
fY (x) for every x ∈ [0, x1], being x1 the intersection point. Furthermore, a similar
statement holds if fX intersects fY (2N + 1) times in (0, 1) (N ≥ 0). More precisely,
named xi (i = 1, ..., 2N + 1) the intersection points, if fX(0) > fY (0) and

∫ x2k+2

x2k
fX =∫ x2k+2

x2k
fY , ∀ 0 ≤ k ≤ N , where x0 = 0 and x2N+2 = 1, then one still gets the comparison

principle.

PROOF. By the last assumption, there must exist x1 ∈ (0, 1) such that fX(x) >
fY (x) on [0, x1), and fX(x) < fY (x) on (x1, 1). Let ϕ1 ∈ Ẇ 1,2

X be the first NLPCs
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transformation associated to fX . Since ϕ1 ∈ C1(−1, 1) is concave in (0, 1) its first
derivative ϕ′

1 is decreasing there. Thus there exists limx→1− ϕ′
1 (x) which, being ϕ′

1

positive, must be finite and, in particular, ϕ1 ∈ Ẇ 1,2. By this, limx→1− ϕ1 (x) is finite
too. We have ϕ1 ∈ Ẇ 1,2 ⊂ Ẇ 1,2

Y , where the embedding is due to the boundedness of
fY . The strict monotonicity of ϕ1 (see Lemma 1), by which ϕ2

1(x) is strictly increasing
on [0, 1], gives

∫ 1

−1

ϕ2
1 (x) (fX(x) − fY (x))dx = 2

∫ 1

0

ϕ2
1 (x) (fX(x) − fY (x))dx

= 2

∫ x1

0

ϕ2
1 (x) (fX(x) − fY (x))dx + 2

∫ 1

x1

ϕ2
1 (x) (fX(x) − fY (x))dx

< 2

∫ x1

0

ϕ2
1 (x1) (fX(x) − fY (x))dx + 2

∫ 1

x1

ϕ2
1 (x1) (fX(x) − fY (x))dx

= ϕ2
1 (x1)

∫ 1

−1

(fX(x) − fY (x))dx = 0

that is ∫ 1

−1

ϕ2
1 (x) fX(x) dx <

∫ 1

−1

ϕ2
1 (x) fY (x) dx. (12)

Since by Proposition 1 transformation ϕ1 is concave on [0, 1], it follows that (ϕ′
1(x))2

is decreasing on [0, 1]. Thus, in a completely analogous way, we deduce

∫ 1

−1

(ϕ′
1 (x))

2
fX(x) dx ≥

∫ 1

−1

(ϕ′
1 (x))

2
fY (x) dx. (13)

By (12) and (13), we finally conclude that

λfX

1 =

∫ 1

−1
ϕ2

1 (x) fX(x)dx
∫ 1

−1
(ϕ′

1 (x))
2

fX(x) dx
< max

ϕ∈Ẇ1,2

Y

∫ 1

−1
ϕ2 (x) fY (x) dx

∫ 1

−1
(ϕ′ (x))

2
fY (x) dx

= λfY

1 .

Since, under the assumptions of Proposition 3, it holds E
[
X2

]
< E

[
Y 2

]
we conclude

that for the set of unimodal symmetric distributions considered, the variance ordering
is preserved passing to the corresponding first NLPCs.

EXAMPLE 3. Consider the cssβ (r) family (10). A direct inspection of Kr gives
r2 > r1 if and only if Kr2

> Kr1
, r1, r2 ∈ R+. Thus fX(0, r) = Kr is increasing

with respect to r. Furthermore, when r varies, the fX(x, r) intersect themselves once.
On the other hand, by Example 1, we know that fX(x, r) satisfies the assumptions of

Proposition 1 for all r. Hence Proposition 3 applies and, setting λr
1 := λ

fX (x,r)
1 , we get

r2 > r1 if and only if λr2

1 < λr1

1 , ∀r ∈ R+.

3 An Application

In [6] a goodness-of-fit test for uniform distributions against unimodal distributions,
based on a comparison result proved in [10], was given. Proposition 3 and Remark
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1 allow to characterize all the distributions involved only by the knowledge of λ1,
permitting to generalize such a test procedure.

As explanatory example, we test X ∈ Υ([−1, 1]) is Wigner (that is cssβ (1/2), see
(10)) against any other unimodal symmetric distribution and we state the hypothesis
H0 : λ1 = λW

1 against H1 : λ1 6= λW
1 , where λW

1 = 0.28096 is the variance of the first
NLPC of a Wigner distribution on [−1, 1] computed by the package SLEIGN2 ([11]).
This last computation is theoretically supported by the following

PROPOSITION 4. A Wigner r.v. X admits NLPCs ϕj(X) = cej(arccos(X), qj),
j ∈ N\ {0} where the cej(θ, q) are Mathieu functions (see [1] and [9]). Furthermore
λ1 = (2a1(q1))

−1, where a1(q) is a characteristic value and q1 is the unique solution of
a1(q) = 2q.

PROOF. We recall that (see [1] and [9]) the 2π-periodic even solutions of the Math-

ieu equation:

z′′(θ) + (a − 2q cos(2θ)) z(θ) = 0 a, θ, q ∈ R (14)

are called (even) Mathieu functions, usually indicated with cej(θ, q), j ≥ 1. They can
be expressed in uniformly convergent Fourier series of cosines where the coefficients can
be determined only when a belongs to the set of the so called characteristic value aj(q)
of the Mathieu equation. For the Wigner distribution, problem (3) can be written as






(
x2 − 1

)
u′′(x) + xu′(x) = ξ

(
1 − x2

)
u(x) x ∈ (−1, 1), ξ ∈ R+

lim
x→−1+

u′(x)(1 − x2)1/2 = lim
x→1−

u′(x)(1 − x2)1/2 = 0 .
(15)

By setting x = cos(θ) and z(θ) = u(cos(θ)), the equation in (15) becomes (14), but
with θ ∈ (0, π) and a = 2q = ξ/2. Each solution of (15) can be extended to R

in a 2π−periodic even way, hence becoming one of the Mathieu functions cej(θ, q)
(if z (θ) solves (14) the same holds for z (θ + kπ), k ∈ Z). We prove that, fixed j,
for each family cej(θ, q), depending on q ∈ R+, there exists a unique value qj such
that cej(arccos(x), qj), with x ∈ (−1, 1), solves problem (15). By construction, the
cej(arccos(x), qj) satisfy the boundary conditions in (15), for every j ≥ 1 and q ∈ R+.
Furthermore, by the continuity of aj(q) and aj(0) = j2, aj(q) ∼ −2q + O(q1/2) as
q → +∞, we get the existence, for every j ≥ 1, of at least a solution qj of aj(q) = 2q.
To each qj it corresponds a solution cej(arccos (x) , qj) of (14) with ξ = ξj = 2aj(qj).
Recalling that each cej(θ, q) has exactly j zeros in (0, π), independently on q (see [9], p.
234), the uniqueness of qj, for every j ≥ 1, follows by the simplicity of each ξj combined
with the fact that two eigenfunctions can not have the same number of zeroes in (−1, 1).
Finally, the completeness in Ẇ 1,2

fX
of the set cej(arccos(x), qj)}j≥1 follows by standard

theory of compact operators on Hilbert spaces.

To define the critical region of this test, we introduce the statistic δn =
√

n|λ̂1−λW
1 |,

where λ̂1 is a suitable estimate of λ1 from a sample of size n (see [6]). We obtain the
critical values by a Monte Carlo calculation based on five hundred replications.

Some numerical experiments to study the level and the power of the test proposed
are carried out, having chosen as alternatives the cssβ (r) family (10) and the Truncated
Normal distribution N T (0, σ) on [−1, 1]. Sample sizes n = 100, 200 and 500 were
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considered. Testing at the level α = 0.1, results obtained from five hundred simulations,
are compared with the ones by the Kolmogorov-Smirnov and the Chi-square test. The
substantially good performances of the test based on δn can be deduced from Table 1.

Distributions Wigner cssβ (r = 0) cssβ (r = 3/4) cssβ (r = 1)
n δn δn K-S χ2 δn K-S χ2 δn K-S χ2

100 0.094 0.884 0.390 0.590 0.131 0.117 0.152 0.378 0.177 0.280
200 0.098 0.989 0.682 0.875 0.321 0.150 0.191 0.786 0.332 0.473
500 0.104 1.000 0.982 0.998 0.691 0.264 0.325 0.995 0.739 0.847

Distributions NT (0, σ = 1) NT (0, σ = 1/2)
n δn K-S χ2 δn K-S χ2

100 0.440 0.154 0.216 0.585 0.308 0.415
200 0.626 0.212 0.355 0.944 0.604 0.655
500 0.903 0.378 0.716 0.100 0.969 0.964

Table 1: Estimated level and power in comparison with the Kolmogorov-Smirnov (K-S)
and the Chi-square (χ2) test (α = 0.1).
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91–110.

[5] H. Chernoff, A note on an inequality involving the normal distribution, Ann.
Probab., 9(3)(1981), 533–535.

[6] A. Goia and E. Salinelli, Optimal Nonlinear Transformations of Random Variables,
to appear in Ann. Inst. H. Poincaré Probab. Statist.
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