ISSN 1607-2510

On The Zagreb Index Of Quasi-Tree Graphs^{*}

Sheng Ning Qiao[†]

Received 21 July 2009

Abstract

A topological index is a map from the set of chemical compounds represented by molecular graphs to the set of real numbers. Let G be a simple graph. The first Zagreb index $M_1(G)$ of G is the sum of $(d(u))^2$ for all vertices u of G, and the second Zagreb index $M_2(G)$ of G is the sum of d(u)d(v) for all edges uv of G, where d(u) denotes the degree of the vertex u in G. A graph G is called quasi-tree graph, if there exists a vertex $u \in V(G)$ such that G - u is a tree. In this paper, we give sharp lower and upper bounds on the Zagreb indices of quasi-tree graphs on n vertices, and corresponding extremal graphs are characterized.

1 Introduction

We use Bondy and Murty [2] for terminology and notation not defined here and consider finite simple connected graphs only.

A topological index is a map from the set of chemical compounds represented by molecular graphs to the set of real numbers. Many topological indices are closely correlated with some physico-chemical characteristics of the underlying compounds.

Let G be a simple graph. The first Zagreb index $M_1(G)$ and the second Zagreb index $M_2(G)$ of G are defined in [7] respectively as

$$M_1(G) = \sum_{u \in V(G)} (d(u))^2, \qquad M_2(G) = \sum_{uv \in E(G)} d(u)d(v),$$

where d(u) denotes the degree of the vertex u in G.

The Zagreb indices and their variants have been used to study molecular complexity, chirality, ZE-isomerism and heterosystems, etc. The Zagreb indices are also used by various researchers in their QSPR and QSAR studies [1, 5, 8, 14]. The development and use of the Zagreb indices were summarized in [6, 11]. Mathematical properties of the first Zagreb index for general graphs can be found in [3, 4, 12, 13]. Zhou [16] presented sharp upper bounds for the Zagreb indices M_1 and M_2 of a graph, especially for triangle-free graphs, in terms of the number of vertices and the number of edges. Yan et al. [15] gave sharp upper and lower bounds on the second Zagreb index of unicyclic graphs with n vertices and k pendant vertices.

^{*}Mathematics Subject Classifications: 05C05, 05C85.

[†]Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China

A graph G is called *quasi-tree graph*, if there exists a vertex $x \in V(G)$ such that G-x is a tree. In this paper, we give sharp lower and upper bounds on the Zagreb indices of quasi-tree graphs on n vertices, and corresponding extremal graphs are characterized.

Let y be a vertex of G. By G - y we denote $G[V(G) \setminus \{y\}]$. Let z be a vertex of G with $yz \notin E(G)$. By G + yz we denote $G[E(G) \cup \{yz\}]$. Let G be a quasi-tree graph on n vertices and x a vertex of G such that G - x is a tree. If $d_G(x) = 1$, then G is a tree. Li et al. [10] and Lang et al. [9] proved the following results.

THEOREM 1 [10]. Let T be a tree on n vertices. Then

- (i) $M_1(G) \ge 4n 6$ equality holds if and only if T is a path on n vertices;
- (ii) $M_1(G) \leq n(n-1)$ equality holds if and only if T is a star on n vertices.
- THEOREM 2 [9]. Let T be a tree on n vertices. Then
- (i) $M_2(G) \ge 4(n-2)$ equality holds if and only if T is a path on n vertices;
- (ii) $M_2(G) \leq (n-1)^2$ equality holds if and only if T is a star on n vertices.

So, we may assume that $d_G(x) \geq 2$ for all quasi-tree graphs on n vertices. Let $\mathbb{QT}(n)$ be the set of all quasi-tree graphs G on n vertices and $d_G(x) \geq 2$. By $K_{1,1,n-2}$ we denote the complete tripartite graph. Our main results are as follows.

THEOREM 3. Let $n \geq 3$ be a positive integer and G be a graph with $G \in \mathbb{QT}(n)$. Then we have

(i) $M_1(G) \ge 4n$ equality holds if and only if $G = C_n$;

(ii) $M_1(G) \leq 2n^2 - 6$ equality holds if and only if $G = K_{1,1,n-2}$.

THEOREM 4. Let $n \ge 3$ be a positive integer and G be a graph with $G \in \mathbb{QT}(n)$. Then we have

(i) $M_2(G) \ge 4n$ equality holds if and only if $G = C_n$;

(ii) $M_2(G) \leq 5n^2 - 14n + 9$ equality holds if and only if $G = K_{1,1,n-2}$.

Since the methods of the proofs of Theorem 3 and Theorem 4 are similar, we only prove Theorem 4 in the next section.

2 The Proof of Theorem 4

PROOF of (i). We prove (i) by induction on n. If n = 3, then (i) holds obviously. In the following we may assume $n \ge 4$. We consider two cases as follows.

Case 1. There exists a vertex u in G such that $d_G(u) = 1$.

Let v be a vertex in G with $uv \in E(G)$. Suppose that $N_G(v) = \{u, u_1, u_2, \ldots, u_p\}$. Clearly $p \ge 1$. Let G' = G - u. It is not difficult to see that $G' \in \mathbb{QT}(n-1)$. If $p \ge 2$, then by the induction hypothesis, we can get that

$$M_2(G) \ge M_2(G') + 5 \ge 4n - 4 + 5 > 4n.$$

If p = 1, then we have $d_G(u_1) \ge 2$ and $G' \ne C_{n-1}$. So, by the induction hypothesis, we have

$$M_2(G) \ge M_2(G') + 4 > 4n - 4 + 4 = 4n.$$

Case 2. The minimum degree of G is at least two.

Since G is a quasi-tree graph, there exists a vertex with exactly two degrees in G. Without loss of generality, we let u be the vertex in G such that $d_G(u) = 2$ and $N_G(u) = \{v_1, v_2\}$. Suppose $G \neq C_n$. We will show that $M_2(G) > 4n$. Let G' = G - u. Since the minimum degree of G is at least two, we have $G' \in \mathbb{QT}(n-1)$. So, by the induction hypothesis, we have

$$M_2(G) \ge M_2(G') + 8 > 4n - 4 + 8 > 4n.$$

The proof of (i) is complete.

PROOF of (ii). We prove (ii) by induction on n. If n = 3, then (ii) follows immediately. We may assume $n \ge 4$. Choose $G \in \mathbb{QT}(n)$ such that $M_2(G)$ is as large as possible.

We claim that the minimum degree of G is at least two. If not, then we let y be a vertex with exactly one degree in G. Let x be a vertex in G such that G - x is a tree. It is easy to see that $xy \notin E(G)$. Since $G + xy \in \mathbb{QT}(n)$ and $M_2(G + xy) > M_2(G)$, by the choice of G in $\mathbb{QT}(n)$ we can obtain a contradiction. So the minimum degree of G is at least two. In fact, it follows from the choice of G in $\mathbb{QT}(n)$ that $d_G(x) = n - 1$.

If there exists a vertex $x' \neq x$ in G such that G - x' is a tree, then by the choice of G in $\mathbb{QT}(n)$ we have $d_G(x') = n - 1$. Since G is a quasi-tree graph, we can get that G - x - x' contains no edges. This implies that $G = K_{1,1,n-2}$. Thus, in the following we assume $G \neq K_{1,1,n-2}$ and we show that $M_2(G) < M_2(K_{1,1,n-2}) = 5n^2 - 14n + 9$, a contradiction.

Since the minimum degree of G is at least two and G is a quasi-tree graph, we can deduce that G contains a vertex v with exactly two degrees. Set $N_G(v) = \{u, w\}$. It is not difficult to see that $G \neq C_n$. Then we have $G - v \in \mathbb{QT}(n-1)$. By $G \neq K_{1,1,n-2}$, it follows that $G - v \neq S_{1,1,n-3}$. By the induction hypothesis, we have

$$M_{2}(G) \leq M_{2}(G-v) + 2(n-1) + 2d_{G}(w) + \left(4n - 6 - n - 1 - d_{G}(w)\right) + \left(n - 2 + d_{G}(w)\right) + \left(n + d_{G}(w) - 3\right) = M_{2}(G-v) + 7n + 3d_{G}(w) - 14 < 5(n-1)^{2} - 14(n-1) + 9 + 7n + 3(n-2) - 14 = 5n^{2} - 14n + 8 < 5n^{2} - 14n + 9.$$

The proof of (ii) is complete.

References

- A. T. Balaban (Ed.), From Chemical Topology to Three-dimensional Geometry, Plenum, New York, 1997.
- [2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan Press, New York, 1976.

- [3] D. de Caen, An upper bound on the sum of degrees in a graph, Discr. Math., 185(1988), 245–248.
- [4] K. C. Das, Sharp bounds for the sum of the squares of the degrees of a graph, Kragujevac J. Math., 25(2003), 31–49.
- [5] J. Devillers and A. T. Balaban (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach, Amsterdam, 1999.
- [6] I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 50(2004), 83–92.
- [7] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17(1972), 535–538.
- [8] M. Karelson, Molecular Descriptors in QSAR/QSPR, Wiley-Interscience, New York, 2000.
- [9] R. Lang, X. Li and S. Zhang, Inverse problem for Zagreb index of molecular graph, Applied Mathematics A Journal of Chinese Universities, 18(2003), 487–493.
- [10] X. Li, Z. Li and L. Wang, The inverse problems for some topological indices in combinatorial chemistry, J. of Computational Biology, 10(2003), 47–55.
- [11] S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta, 76(2003), 113–124.
- [12] U. N. Peled, R. Petreschi and A. Sterbini, (n, e)-graphs with maximum sum of squares of degrees, J. Graph Theory, 31(1999), 283–295.
- [13] L. A. Székely, L. H. Clark and R. C. Entringer, An inequality for degree sequences, Discr. Math., 103(1992), 293–300.
- [14] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
- [15] Z. Yan, H. Liu and H. Liu, Sharp bounds for the second Zagreb index of unicyclic graphs, J. of Math. Chem., 42(2007), 565–574.
- [16] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem., 52(2004), 113–118.