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Abstract

In this paper, we introduce and consider a new system of general nonconvex

variational inequalities involving three different operators. Using the projection

operator technique, we establish the equivalence between the system of general

nonconvex variational inequalities and the fixed points problem. This alternative

equivalent formulation is used to suggest and analyze some new explicit iterative

methods for this system of nonconvex variational inequalities. We also study the

convergence analysis of the new iterative method under certain mild conditions.

Since this new system includes the system of nonconvex variational inequalities,

variational inequalities and related optimization problems as special cases, results

obtained in this paper continue to hold for these problems. Our results can be

viewed as a refinement and improvement of the previously known results for

variational inequalities.

1 Introduction

Variational inequalities, which was introduced and studied by Stampacchia [1] in the
early sixties, can be considered as a natural and significant extension of the varia-
tional principles, the origin of which can be traced back to Fermat, Euler, Leibniz,
Newton, Lagrange and Bernoulli brothers. The techniques and ideas of the variational
inequalities are being applied in a variety of diverse areas of sciences and proved to be
productive and innovative. These activities have motivated to generalize and extend
the variational inequalities and related optimization problems in several directions us-
ing new and novel techniques. In recent years, much attention has been given to study
the system of variational inequalities involving different operators in Hilbert spaces.
Using the projection technique, one may usually establish the equivalence between
the system of variational inequalities and the fixed point problems. This alternative
equivalent formulation has been used to suggest and analyze some iterative methods
for solving the system of variational inequalities, see [2,3,4,5,6,7] and the references
therein.
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We would like to emphasize that all the results regarding the iterative methods
for solving the system of variational inequalities have been considered in the convexity
setting. This is because all the techniques are based on the properties of the projection
operator over convex sets, which may not hold in general, when the sets are nonconvex.
Noor [4,8,9,10,11] has introduced and studied a new class of variational inequalities,
which is called the nonconvex variational inequality in conjunction with the uniformly
prox-regular sets, which are nonconvex sets. Noor [4,8,9,10,11] has shown that the
projection technique can be extended for the nonconvex variational inequalities.

Inspired and motivated by the ongoing research in this area, we introduce and
consider a system of nonconvex variational inequalities involving three different oper-
ators. This class of system includes the system of nonconvex variational inequalities,
considered by Moudafi [12] and the classical variational inequalities as special cases.
Using essentially the technique of Noor [4,8,9,10,11] in conjunction with projection op-
erator method, we establish the equivalence between the system of general nonconvex
variational inequalities and fixed-point problems, which is lemma 3.1. This result can
be viewed as the extension of a result of Noor [4,8,9,10,11]. We use this alternative
equivalent formulation to suggest and analyze some iterative methods (Algorithm 31-
Algorithm 3.4) for solving the system of general nonconvex variational inequalities. We
also prove the convergence of the proposed iterative methods under suitable conditions,
which is the main motivation of Theorem 4.1. Since the new system of general noncon-
vex variational inequalities includes the system of nonconvex variational inequalities,
studied by Moudafi [12] and Noor [4] and related optimization problems as special
cases, results proved in this paper continue to hold for these problems. Our result can
be viewed as refinement and improvement of the previous results in this field.

2 Formulation and Basic Results

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉
and ‖.‖ respectively Let K be a nonempty closed and convex set in H. We, first of all,
recall the following well-known concepts from nonlinear convex analysis and nonsmooth
analysis [13,14].

DEFINITION 2.1. The proximal normal cone of K at u ∈ H is given by

NP
K(u) := {ξ ∈ H : u ∈ PK [u + αξ]},

where α > 0 is a constant and

PK [u] = {u∗ ∈ K : dK(u) = ‖u − u∗‖}.
Here dK(.) is the usual distance function to the subset K, that is

dK(u) = inf
v∈K

‖v − u‖.

The proximal normal cone NP
K(u) has the following characterization.

LEMMA 2.1. Let K be a nonempty, closed and convex subset in H. Then ζ ∈ NP
K ,

if and only if, there exists a constant α > 0 such that

〈ζ, v − u〉 ≤ α‖v − u‖2, ∀v ∈ K.
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Poliquin et al. [14] and Clarke et al. [13] have introduced and studied a new class
of nonconvex sets, which are called uniformly prox-regular sets. This class of uniformly
prox-regular sets has played an important part in many nonconvex applications such
as optimization, dynamic systems and differential inclusions.

DEFINITION 2.2. For a given r ∈ (0,∞], a subset Kr is said to be normalized
uniformly r-prox-regular if and only if every nonzero proximal normal to Kr can be
realized by an r-ball, that is, ∀u ∈ Kr and 0 6= ξ ∈ NP

Kr

, one has

〈(ξ)/‖ξ‖, v − u〉 ≤ (1/2r)‖v − u‖2, ∀v ∈ Kr .

It is clear that the class of normalized uniformly prox-regular sets is sufficiently
large to include the class of convex sets, p-convex sets, C1,1submanifolds (possibly
with boundary) of H, the images under a C1,1 diffeomorphism of convex sets and
many other nonconvex sets; see [13,14]. It is clear that if r = ∞, then uniformly
prox-regularity of Kr is equivalent to the convexity of K. It is known that if Kr is a
uniformly prox-regular set, then the proximal normal cone NP

Kr

is closed as a set-valued
mapping.

We now recall the well known proposition which summarizes some important prop-
erties of the uniform prox-regular sets.

LEMMA 2.2. Let K be a nonempty closed subset of H, r ∈ (0,∞] and set
Kr = {u ∈ H : d(u, K) < r}. If Kr is uniformly prox-regular, then
i. ∀u ∈ Kr, PKr

6= ∅,
ii. ∀r

′ ∈ (0, r), PKr
is Lipschitz continuous with constant r

r−r′ on Kr
′ ,

iii. The proximal normal cone is closed as a set-valued mapping.

For given nonlinear operators T1, T2, g, we consider the problem of finding x∗, y∗ ∈
Kr such that

〈ρT1(y
∗) + x∗ − g(y∗), g(x) − x∗〉 ≥ 0, ∀x ∈ H : g(x) ∈ Kr, ρ > 0, (1)

〈ηT2(x
∗) + y∗ − g(x∗), g(x) − y∗〉 ≥ 0, ∀x ∈ H : g(x) ∈ Kr , η > 0, (2)

which is called the system of general nonconvex variational inequalities (SGNVID). For
the application of the system of variational inequalities in the setting of convexity, see
[4,7].

We now discuss some special cases of the new system of general nonconvex varia-
tional inequalities.

I. If T1 = T2 = T, then the system of general nonconvex variational inequalities
SGV ID is equivalent to finding x∗, y∗ ∈ Kr such that

〈ρTy∗ + x∗ − g(y∗), g(x) − x∗〉 ≥ 0, ∀x ∈ H : g(x) ∈ Kr (3)

〈ηTx∗ + y∗ − g(x∗), g(x) − x∗〉 ≥ 0, ∀x ∈ H : g(x)Kr . (4)

This system of general nonconvex variational inequalities (GSNVI) has been studied
by Noor [4]. For g = I, the identity operator, the system of nonconvex variational
inequalities(SNVI) has been considered by Moudafi [12].
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II. If ρ = 0, x∗ = y∗, then system of general nonconvex variational inequalities
(GSNVI) reduces to finding x∗ ∈ Kr such that

〈Tx∗, g(x) − x∗〉 ≥ 0, ∀x ∈ H : g(x) ∈ Kr, (5)

which is known as the general nonconvex variational inequality (GNVI), introduced
and studied by Noor [9,9] in recent years.

III. If Kr ≡ K, a convex set in H, then problem (GNVI) is equivalent to finding
x∗ ∈ K such that

〈Tx∗, x− x∗〉 ≥ 0, ∀x ∈ K, (6)

which is known as the classical variational inequality introduced and studied by Stam-
pacchia [1] in 1964.

This shows that the system of mixed variational inequalities (SNV ID) is more
general and include several classes of variational inequalities and related optimization
problems as special cases. For the recent applications, numerical methods and formu-
lations of variational inequalities, see [1-26] and the references therein.

3 Iterative Algorithms

In this Section, we suggest some explicit iterative algorithms for solving the system
of general nonconvex variational inequalities (SNVID). First of all, we establish the
equivalence between the system of nonconvex variational inequalities and fixed point
problems, which is the main motivation of our next result.

LEMMA 3.1. x, y ∈ Kr is a solution of (1) and (2), if and only if, x, y ∈ Kr satisfies
the relation

x = PKr
[g(y) − ρT1(y)] (7)

y = PKr
[g(x) − ηT2(x], (8)

where ρ > 0 and η > 0 are constants.

PROOF. Let x, y ∈ Kr be a solution of (1) and (2). Then, we have

0 ∈ ρT1(y) + x − g(y) + NP
Kr

(x) = (I + NP
Kr

)(x) − (g(y) − ρT1(y)

0 ∈ ηT2(x) + y − g(x) + NP
Kr

(y) = (I + NP
Kr

(y) − (g(x) − ηT2(x)),

which implies that

x = PKr
[g(y) − ρT1(y)]

y = PKr
[g(x) − ηT2(x)],

and conversely, where we have used the fact that PKr
= (I + NP

Kr

)−1. The proof is
complete.

Lemma 3.1 implies that the system of nonconvex variational inequalities (SNVID)
is equivalent to the fixed point problem. This alternative equivalent formulation is used
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to suggest and analyze a number of iterative methods for solving system of nonconvex
variational inequalities and related optimization problems.

Using Lemma 3.1, we can easily show that finding the solution x∗, y∗ ∈ Kr of
SNVID is equivalent to finding (x∗, y∗) ∈ Kr such that

x∗ = (1 − an) + anPKr
[g(y∗) − ρT1(y

∗)], (9)

y∗ = PKr
[g(x∗) − ηT2(x

∗)], (10)

where an ∈ [0, 1], for all n ≥ 0.
We use this alternative equivalent formulation to suggest the following explicit

iterative method for solving the system of nonconvex variational inequalities(SNVID).

ALGORITHM 3.1. For arbitrarily chosen initial points x0, y0 ∈ Kr , compute the
sequences {xn} and {yn} by

xn+1 = (1 − an)xn + anPKr
[g(yn) − ρT1(yn)] (11)

yn+1 = PKr
[g(xn+1) − ηT2(xn+1)], (12)

where an ∈ [0, 1] for all n ≥ 0.

If T1 = T2 = T , then Algorithm 3.1 reduces to the following.

ALGORITHM 3.2. For arbitrarily chosen initial points x0, y0 ∈ Kr , compute the
sequences {xn} and {yn} by

xn+1 = (1 − an)xn + anPKr
[g(yn) − ρT (yn)],

yn+1 = PKr
[g(xn+1) − ηT (xn+1)],

where an ∈ [0, 1] for all n ≥ 0.

If T1 = T2 = T and g = I, the identity operator, then Algorithm 3.1 reduces to the
following.

ALGORITHM 3.3. For arbitrarily chosen initial points x0, y0 ∈ Kr , compute the
sequences {xn} and {yn} by

xn+1 = (1 − an)xn + anPKr
[yn − ρT (yn)],

yn+1 = PKr
[xn+1 − ηT (xn+1)],

where an ∈ [0, 1] for all n ≥ 0.

We would like to emphasize that one can obtain a number of iterative methods for
solving system of (nonconvex) variational inequalities and related optimization prob-
lems for appropriate choice of the operators and spaces. This shows that the Algorithm
3.1 is quite flexible and general.

DEFINITION 3.1. A mapping T : H → H is called r-strongly monotone, if there
exists a constant r > 0 such that

〈Tx − Ty, x − y〉 ≥ r||x− y||2, ∀x, y ∈ H.

DEFINITION 3.2. A mapping T : H → H is called relaxed γ-cocoercive, if there
exists a constant γ > 0 such that

〈Tx − Ty, x − y〉 ≥ −γ||Tx − Ty||2, ∀x, y ∈ H.
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DEFINITION 3.3. A mapping T : H → H is called relaxed (γ, r)-cocoercive, if
there exist constants γ > 0, r > 0 such that

〈Tx − Ty, x − y〉 ≥ −γ||Tx − Ty||2 + r||x− y||2 ∀x, y ∈ H.

The class of relaxed (γ, r)-cocoercive mappings is more general than the class of
strongly monotone mappings.

DEFINITION 3.4. A mapping T : H → H is called µ-Lipschitzian, if there exists a
constant µ > 0, such that

||Tx− Ty|| ≤ µ||x− y||, ∀x, y ∈ H.

LEMMA 3.2 [27]. Suppose {δn}∞n=0 is a nonnegative sequence satisfying the
following inequality:

δn+1 ≤ (1 − λn)δn + σn, ∀ n ≥ 0,

with λn ∈ [0, 1],
∑

∞

n=0 λn = ∞, and σn = o(λn). Then limn→∞ δn = 0.

4 Main Results

In this Section, we consider the convergence criteria of Algorithm 3.1 under some
suitable mild conditions and this is the main motivation as well as main result of this
paper.

THEOREM 4.1. Let (x∗, y∗) be the solution of SGVID. If T1(.) : H → H is relaxed
(γ1, r1)-cocoercive and µ1-Lipschitzian and T2(.) : H → H is relaxed (γ2 , r2)-cocoercive
and µ2-Lipschitzian. Let g be relaxed (γ3, r3)-cocoercive and µ3-Lipschitz. If

∣

∣

∣
ρ − r1−γ1µ2

1

µ2

1

∣

∣

∣
<

√
δ2(r1−γ1µ2

1
)2−µ2

1
(δ2−(1−δk)2)

δµ2

1

δr1 > δγ1µ
2
1 + µ1

√

δ2 − (1 − δk)2,
(13)

∣

∣

∣
η − r2−γ2µ2

2

µ2

2

∣

∣

∣
<

√
δ(r2−γ2µ2

2)2−µ2

2
(δ2−(1−δk)2)

δµ2

2

,

δr2 > δγ2µ
2
2 + µ2

√

δ2 − (1 − δk)2,
(14)

where

k =
√

1 − 2(r3 − γ3µ
2
3 + µ2

3, (15)

and an ∈ [0, 1],
∑

∞

n=0 an = ∞, then for arbitrarily chosen initial points x0, y0 ∈ K,
xn and yn obtained from Algorithm 3.1 converge strongly to x∗ and y∗ respectively.

PROOF. To prove the result, we first evaluate ||xn+1 − x∗|| for all n ≥ 0. From
(9), (11), and the Lipschitz continuity of the projection operator PKr

with constant
δ > 0, we

||xn+1 − x∗||
= ||(1− an)xn + anPKr

[g(yn) − ρT1(yn] − (1 − an)x∗ − anPKr
[g(y∗) − ρT1(y

∗)]||
≤ (1 − an)||xn − x∗||+ an||PKr

[g(yn) − ρT1(yn)] − PKr
[g(y∗) − ρT1(y

∗)]||
≤ (1 − an)||xn − x∗||+ anδ||g(yn) − g(y∗) − ρ[T1(yn) − T1(y

∗)]||
+anδ‖yn − y∗ − (g(yn) − g(y∗))‖. (16)
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From the relaxed (γ1, r1)-cocoercive and µ1-Lipschitzian definition of T1(.), we have

||yn − y∗ − ρ[T1(yn) − T1(y
∗)]||2

= ||yn − y∗||2 − 2ρ〈T1(yn) − T1(y
∗), yn − y∗〉 + ρ2||T1(yn) − T1(y

∗)||2
≤ ||yn − y∗||2 − 2ρ[−γ1||T1(yn) − T1(y

∗)||2 + r1||yn − y∗||2]
+ρ2 ||T1(yn) − T1(y

∗)||2
≤ ||yn − y∗||2 + 2ργ1µ

2
1||yn − y∗||2 − 2ρr1||yn − y∗||2 + ρ2µ2

1||yn − y∗||2
= [1 + 2ργ1µ

2
1 − 2ρr1 + ρ2µ2

1]||yn − y∗||2. (17)

In a similar way, using the (γ3, r3)-cocoercivity and µ3-Lipschitz continuity of the
operator g, we have

‖yn − y∗ − (g(yn) − g(y∗))‖ ≤ k‖yn − y∗‖, (18)

where k is defined by (15). Set

θ1 = δ
{

k + [1 + 2ργ1µ
2
1 − 2ρr1 + ρ2µ2

1]
1/2

}

(19)

It is clear from the condition (13) that θ1 < 1. Hence from (18), (16) and (17), it
follows that

‖xn+1 − x∗‖ ≤ (1 − an)‖xn − x∗‖ + anθ1‖yn − y∗‖. (20)

Similarly, from the relaxed (γ2 , r2)-cocoercive and µ2-Lipschitzian of T2(.), we obtain

||xn+1 − x∗ − η[T2(xn+1) − T2(x
∗)]||2

= ||xn+1 − x∗||2 − 2η〈T2(xn+1) − T2(x
∗), xn+1 − x∗〉

+η2||T2(xn+1) − T2(x
∗)||2

≤ ||xn+1 − x∗||2 − 2η[−γ2||T2(xn+1) − T2(x
∗)||2 + r2||xn+1 − x∗||2]

+η2||T2(xn+1) − T2(x
∗, )||2

= ||xn+1 − x∗||2 + 2ηγ2||T2(xn+1) − T2(x
∗)||2 − 2ηr2||xn+1 − x∗||2

+η2||T2(xn+1) − T2(x
∗)||2

≤ ||xn+1 − x∗||2 + 2ηγ2µ
2
2||xn+1 − x∗||2 − 2ηr2||xn+1 − x∗||2

+η2µ2
2||xn+1 − x∗||2

= [1 + 2ηγ2µ
2
2 − 2ηr2 + η2µ2

2]||xn+1 − x∗||2. (21)

Hence from (10), (12), (18), (20) and the Lipschitz continuity of the projection operator
PKr

with constant δ > 0, we have

||yn+1 − y∗|| = ||PKr
[g(xn+1) − ηT2(xn+1) − PKr

[x∗ − ηT2(x
∗)]||

≤ δ||g(xn+1) − g(x∗) − η(T2(xn+1)] − T2(x
∗))||

≤ δ‖||xn+1 − x∗ − η(T2(xn+1)] − T2(x
∗))||

+δ‖xn+1 − x∗ − (g(xn+1) − g(x∗))‖
≤ θ2||xn+1 − x∗||, (22)
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where
θ2 = δ

{

k + [1 + 2ηγ2µ
2
2 − 2ηr2 + η2µ2

2]
1/2

}

From (14), it follows that θ2 < 1.
From (20) and (22), we obtain that

||xn+1 − x∗|| ≤ (1 − an)||xn − x∗||+ anθ1||yn − y∗||
≤ (1 − an)||xn − x∗||+ anθ1 · θ2 ||xn − x∗||
= [1− an(1 − θ1θ2)]||xn − x∗||.

Since the constant(1 − θ1θ2) ∈ (0, 1], and
∑

∞

n=0 an(1 − θ1θ2) = ∞, from Lemma 3.2,
we have limn→∞ ||xn − x∗|| = 0. Hence the result limn→∞ ||yn − y∗|| = 0 is from
(22). This completes the proof.
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