Convex Functionals With Good Asymptotic Behavior
On A Subset

Mounir El Maghrí†, Bouchaïb Radi‡

Received 28 November 2008

Abstract
We characterize the class of convex functionals that are asymptotically well behaved on a given convex set, instead of the whole space, by use of restriction functions. For subsets of (infinite) inequality system, the sequential stationarity becomes a Kuhn-Tucker system partially approximated. However, relaxing the condition of complementarity, we show that it does not change the class. Application to a new interior penalty method, penalizing the infinite inequalities, is given to illustrate the relevance of this result.

1 Introduction
The stationary sequences for convex functionals are reconsidered and investigated in [3] to remedy the question of unbounded sequences, those precisely having no cluster points when they are generated by a certain algorithm conceived to solve problems of optimization. Convexity is not sufficient to ensure that such sequences are minimizing. In fact, the quality of good asymptotic behavior is needed. There has been characterized a large class of closed convex functions having the property that every stationary sequence is minimizing, the so-called asymptotically well behaved functions (see [2, 3, 4]). Besides the inf-compact functions, the class contains functions that are not inf-compact. This constitutes an extension of the Palais-Smale condition in a sense that no limit points of the stationary sequences are required. The characteristic condition is obtained with the help of sublevel sections strictly above the infimum. Then, dual characterizations more easily checkable were obtained (e.g., [2, 6]). In [14, 15] are established some important links with the well-known concepts of conditioning and well-posedness. Several applications enlarging the scope of convergence for certain classical numerical methods in unbounded cases can also be found (e.g., [1], [2] and [3]). In [2], the convergence of the quadratic exterior penalty method was obtained via new Fenchel duality results for a subclass where, by definition, the stationary sequences not only are minimizing but also converge towards the optimal set assumed to be nonempty.

*Mathematics Subject Classifications: 90C25, 90C48, 90C59, 93C25.
†Department of Mathematics and Computer, Faculty of Sciences, Chouaïb Doukkali University, BP 20, El Jadida, Morocco. E-mail: elmaghri@yahoo.com
‡Department of Mathematics, Faculty of Sciences and Technics, Hassan Premier University, Settat, Morocco. E-mail: bouchaib.radi@yahoo.fr
The purpose of this paper is that the good asymptotic behavior concept may also be taken over a convex subset instead of the whole space, in a sense that, every stationary sequence of a restricted convex function is minimizing over the restriction set. In instance of mathematical programming sets, the sequential stationarity while made explicit, leads to a KT system only partially approximated. The first result is that, we can weaken asymptotically the complementarity condition without modifying the good behavior at the infinity. The class thus remains intact. Then we introduce a new version of the logarithmic interior penalty method, actually penalizing infinitely many inequalities, and prove its convergence for this broad class, so that, the produced sequences even having no limit point are minimizing over such constraints.

2 Definitions and Preliminaries

Let X be a reflexive Banach space. For a convex function $f : X \to \mathbb{R} \cup \{+\infty\}$, let us recall the following sets of convex analysis:

- $\text{dom } f = \{x \in X : f(x) \in \mathbb{R}\}$ its effective domain,
- $X_\lambda(f) = \{x \in X : f(x) \leq \lambda\}$ its sublevel set at height $\lambda \in \mathbb{R}$,
- $\partial f(\bar{x}) = \{c \in X^* : f(x) \geq f(\bar{x}) + \langle c, x - \bar{x}\rangle, \forall x \in X\}$ its subdifferential at a point $\bar{x} \in \text{dom } f$ (by convention $\partial f(\bar{x}) = \emptyset$ for $\bar{x} \notin \text{dom } f$), where $\langle \cdot, \cdot \rangle$ stands for the duality scalar product between X and its topological dual X^*,
- $\Gamma_0(X) = \{f : X \to \mathbb{R} \cup \{+\infty\} that are convex, proper and l.s.c\}.

A sequence $(x^n) \subset X$ is said to be stationary (for f) if $d(0, \partial f(x^n)) \to 0$. Following [3], by definition $f \in \Gamma_0(X)$ has a good asymptotic behavior (on X) if every stationary sequence is minimizing, i.e., for $(x^n) \subset X$,

$$d(0, \partial f(x^n)) \to 0 \Rightarrow f(x^n) \to \inf_X f(x).$$

This broad class of functions, denoted by \mathcal{F}, includes functions that are not inf-compact and do not attain their infima eventually, and has the following characterization.

Theorem 1 ([2] or [3]).

$$\mathcal{F} = \{f \in \Gamma_0(X) : r_\lambda(f) > 0, \forall \lambda > \inf_X f(x)\}$$

where the parameters $r_\lambda(f)$ and $l_\lambda(f)$ are defined for each scalar $\lambda > \inf_X f(x)$ by:

$$r_\lambda(f) = \inf_{f(x) = \lambda} d(0, \partial f(x)), \quad l_\lambda(f) = \inf_{f(x) > \lambda} \frac{f(x) - \lambda}{d(x, X_\lambda(f))}.$$

It is quite natural to define the previous concept on a subset as follows. Denote first by $f|_S$ the restriction of $f : X \to \mathbb{R} \cup \{+\infty\}$ over the subset $S \subseteq X$, defined for all $x \in X$ by:

$$f|_S(x) = \begin{cases} f(x) & \text{if } x \in S \cap \text{dom } f \\ +\infty & \text{otherwise} \end{cases}$$
Throughout the paper we shall denote by F the class of such functions. Then $F_X = F$.

Remark 1. Let us note firstly that

1. $f|_S = f + \delta_S$ where $\delta_S : X \rightarrow \mathbb{R} \cup \{+\infty\}$ is the indicator function of S. Obviously, with S nonempty convex closed and $f \in \Gamma_0(X)$, $f|_S \in \Gamma_0(X)$ iff $S \cap \text{dom} \ f \neq \emptyset$.

2. $d(0, \partial f|_S(x^n)) \rightarrow 0$ means that $\forall n, \exists c^n \in \partial f|_S(x^n) : |c^n| \rightarrow 0$. In this case, we must have $x^n \in S \cap \text{dom} \ f \ (\forall n)$ otherwise $\partial f|_S(x^n) = \emptyset$. So $f|_S(x^n) = f(x^n)$.

So it suffices to apply Theorem 1 to the function $f + \delta_S$ (using Remark 1) to obtain the characterization of the class F_S in the general case of implicit subsets.

Corollary 1.

$$F_S = \{f \in \Gamma_0(X) \mid S \cap \text{dom} \ f \neq \emptyset : r_\lambda(f|_S) > 0, \forall \lambda > \inf_S f(x)\}$$

where the parameters $r_\lambda(f|_S)$ and $l_\lambda(f|_S)$ are given for each real $\lambda > \inf_S f(x)$ by:

$$r_\lambda(f|_S) = \inf_{x \in S, \lambda \geq \lambda} d(0, \partial(f + \delta_S)(x)),$$

$$l_\lambda(f|_S) = \inf_{x \in S, \lambda \geq \lambda} \frac{f(x) - \lambda}{d(x, S_\lambda(f))}$$

and $S_\lambda(f) = \{x \in S : f(x) \leq \lambda\}$ is as usual the λ-sublevel set of f restricted to S.

3 The Explicit Case of Mathematical Programming

We henceforth assume that the set S is of mathematical programming form:

$$S = \{x \in X : G(x) \in -Y_+\}$$

where $G : X \rightarrow Y \cup \{+\infty\}$ taking values in Y a Banach space equipped with a partial order induced by a closed convex cone $Y_+ \subset Y$: $\forall y, y' \in Y$,

$$y \leq y', \quad y = y' \iff y - y' \in -Y_+.$$

Then S can be rewritten with $G(x) \leq Y_+$ 0. The element $+\infty$ is adjoined to Y to be its greatest element: $\forall y \in Y, \ y \leq Y_+ + \infty$. The effective domain of the vector mapping G is defined by $\text{dom} \ G = \{x \in X : G(x) \in Y\}$. The vector mapping G is said to be

- Y_+-convex, if $\forall x, x' \in X, \forall \alpha \in [0, 1], \ G(\alpha x + (1 - \alpha)x') \leq Y_+ \alpha G(x) + (1 - \alpha)G(x'),$

- sequentially Y_+-l.s.c at $\bar{x} \in X$, if $\forall y \leq Y_+ G(\bar{x}), \forall (x^n) \rightarrow \bar{x}, \exists (y^n) \rightarrow y : y^n \leq Y_+ G(x^n), \forall n \in \mathbb{N}.$
Sequential \(Y_+\)-l.s.c (at every \(x \in X \)) easily implies that the epigraph and sublevel sets are closed; the converse fails [7]. In particular if \(G \) is sequentially \(Y_+\)-l.s.c then \(S \) is closed. In a metrizable space, in particular the Banach space \(X \), sequential \(\mathbb{R}_+\)-l.s.c is no more than the classical l.s.c, and then by definition, sequential \(\mathbb{R}_+\)-l.s.c also becomes equivalent to l.s.c of the components. We shall adopt for such a vector mapping a similar notation to a scalar function:

\[
\Gamma_0(X,Y) = \{G : X \to Y \cup \{+\infty\} Y_+\text{-convex proper sequentially } Y_+\text{-l.s.c}\}.
\]

A composite function \(\psi \circ \varphi : X \to \mathbb{R} \cup \{+\infty\} \) is defined by \((\psi \circ \varphi)(x) = \psi(\varphi(x)) \) if \(x \in \text{dom} \varphi \) and \(+\infty\) otherwise, and its domain is therefore

\[
dom(\psi \circ \varphi) = \text{dom} \varphi \cap \varphi^{-1}(\text{dom} \psi).
\]

The following formula was established in [7, pp.135]: Let \(f \in \Gamma_0(X) \), \(G \in \Gamma_0(X,Y) \) be such that the following qualification condition of Attouch-Brézis type is satisfied:

\[
(AB) \quad R_+[Y_+ + G(\text{dom} f \cap \text{dom} G)] \quad \text{is a closed vector subspace of } Y.
\]

Then for all \(\bar{x} \in S \cap \text{dom} f \),

\[
\partial f|_S(\bar{x}) = \bigcup_{\mu \in Y^*_+ \atop \langle \mu, f(S) \rangle = 0} \partial \mathcal{L}(\bar{x}, \mu)
\]

where \(Y^*_+ = \{\mu \in Y^* : \langle \mu, y \rangle \geq 0, \forall y \in Y_+\} \) is the (positive) polar cone of \(Y_+ \). In fact in [7], \(f|_S = f + \delta_{-Y_+} \circ G \) and \(\mathcal{L}(., \mu) = f + \mu \circ G \) the well-known Lagrangian.

Remark 2. The above formula well known before [13], actually requires a constraint qualification weaker than the Slater condition “\(\exists a \in \text{dom} f, G(a) \in -\text{int} Y_+ \)”. Indeed, the latter easily implies that \(\mathbb{R}_+[Y_+ + G(\text{dom} f \cap \text{dom} G)] = Y \). Furthermore, the condition \((AB)\) ensures that \(0 \in C = Y_+ + G(\text{dom} f \cap \text{dom} G) \), that is, \(S \cap \text{dom} f \neq \emptyset \). Indeed, observe that for any nonempty convex set \(C \), the set \(\mathbb{R}_+ C \) is a vector space if and only if \([0,+\infty[C \) is a vector space. Thus \(0 \in C \).

It is now easy to verify that for \(f \in \Gamma_0(X) \) and \(G \in \Gamma_0(X,Y) \) under \((AB)\) condition, \((x^n) \subset X \) is a stationary sequence for \(f|_S \) iff it is of Kuhn-Tucker type:

\[
(KT) \quad \begin{cases}
\text{there exists a sequence } (\mu^n) \subset Y^*_+ \text{ of Lagrange multipliers such that,} \\
d(0, \partial \mathcal{L}(x^n, \mu^n)) \to 0 \quad \text{(asymptotic Lagrangian stationarity)} \\
\langle \mu^n, G(x^n) \rangle = 0 \quad (\forall n) \quad \text{(complementarity)} \\
G(x^n) \in -Y_+ \quad (\forall n) \quad \text{(feasibility)}
\end{cases}
\]

Let us relax asymptotically the complementarity condition:

\[
(\tilde{KT}) \quad \begin{cases}
\text{there exists a sequence } (\mu^n) \subset Y^*_+ \text{ of Lagrange multipliers such that,} \\
d(0, \partial \mathcal{L}(x^n, \mu^n)) \to 0 \quad \text{(asymptotic Lagrangian stationarity)} \\
\langle \mu^n, G(x^n) \rangle \to 0 \quad \text{(asymptotic complementarity)} \\
G(x^n) \in -Y_+ \quad (\forall n) \quad \text{(feasibility)}
\end{cases}
\]

The property that every bounded stationary sequence is minimizing, may fail with ones unbounded, as shown by the counter-example below.
EXAMPLE 1. It has been shown in [3] that the function \(f \in \Gamma_0(\mathbb{R}^2) \) defined by \(f(x_1, x_2) = \frac{x_1^2}{x_2^2} \) if \(x_2 > 0 = 0 \) if \(x_1 = x_2 = 0, +\infty \) elsewhere, has a bad asymptotic behavior on \(\mathbb{R}^2 \). We show that it still has this behavior on \(S = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 \geq 1\} \). Indeed, \(x^n = (n, n^2) \) is not minimizing for \(f \) over \(S \) because \(f(x^n) = 1 \neq 0 = \inf_S f(x) \). But it is \((\tilde{K}T)\) stationary taking \(\mu^n = \frac{1}{n^2} \) (resp. \(\mu^n = 0 \)):

\[
\begin{cases}
 f'(x^n) + \mu^n G'(x^n) = \left(\frac{2}{n^2}, \frac{1}{n^2} + \frac{1}{n} \right) \to (0, 0), \\
 \mu^n G(x^n) = \frac{1}{n^2}(1 - n^2) \to 0.
\end{cases}
\]

Given \(S \) defined by (1) with \(G \in \Gamma_0(X, Y) \), we consider the following two classes:

\[F_S^{AB} = \{ f \in \Gamma_0(X) \text{ satisfying } (AB) : \text{every } (KT) \text{ sequence is minimizing for } f |_S \}, \]

\[\bar{F}_S^{AB} = \{ f \in \Gamma_0(X) \text{ satisfying } (AB) : \text{every } (\tilde{K}T) \text{ sequence is minimizing for } f |_S \}. \]

Then it is immediate that

\[\bar{F}_S^{AB} \subseteq F_S^{AB} = F_S \cap \{ f \in \Gamma_0(X) \text{ satisfying } (AB) \}. \tag{4} \]

As mentioned before, the class \(F_S^{AB} \) is in fact unchanged after the relaxation:

THEOREM 2.

\[\bar{F}_S^{AB} = F_S^{AB}. \]

PROOF. According to (4), it remains to show the converse inclusion. Let \(f \in F_S^{AB} \) and suppose \(f \notin \bar{F}_S^{AB} \). Then we may find \((x^n)\) a \((\tilde{K}T)\) stationary sequence not minimizing \(f \) over \(S \). Hence we may find \(\mu^n \in Y_+^* \) and \(c^n \in \partial L(x^n, \mu^n) \) for each \(n \), \(\varrho > \inf_S f(x) \) and \(\lambda \in f(S) \) such that:

\[
\begin{cases}
 ||c^n|| \to 0, \\
 (\mu^n, G(x^n)) \to 0, \\
 G(x^n) \in -Y_+ \quad \text{for all } n, \\
 \inf_S f(x) < \lambda < \varrho \leq f(x^n) \quad \text{for infinitely many } n.
\end{cases}
\]

Since \(f \in F_S^{AB} \), by (4) and Corollary 1, for such \(\lambda \), we have \(l_\lambda(f|_S) > 0 \). Let \(p^n \) be a projection of \(x^n \) over \(S_\lambda(f) \) (defined in Corollary 1) which is a nonempty closed convex subset of the reflexive Banach space \(X \). Hence \(||x^n - p^n|| = d(x^n, S_\lambda(f)) \), \(f(p^n) \leq \lambda \) and \(G(p^n) \in -Y_+ \), and then, we have

\[
\langle c^n, x^n - p^n \rangle \geq L(x^n, \mu^n) - L(p^n, \mu^n) \geq f(x^n) - \lambda + \langle \mu^n, G(x^n) \rangle.
\]

So dividing these inequalities by \(f(x^n) - \lambda \), we obtain for infinitely many \(n \),

\[
\frac{||c^n||}{l_\lambda(f|_S)} \geq \frac{||x^n - p^n||}{f(x^n) - \lambda} \geq 1 + \langle \mu^n, G(x^n) \rangle \frac{1}{f(x^n) - \lambda}.
\]

Since \(\frac{1}{f(x^n) - \lambda} \) is bounded, by letting \(n \not\to +\infty \), we get the contradiction \(0 \geq 1 \).

REMARK 3. The parameter \(r_\lambda(f|_S) \) of Corollary 1 can be given explicitly via (3):

\[
r_\lambda(f|_S) = \inf_{f(x) > \lambda} \inf_{x \in S} \{ ||c|| : c \in \bigcup_{\mu \in Y_+^*} \partial L(x, \mu) \} = \inf_{f(x) > \lambda} \inf_{\mu \in Y_+^*} d(0, \partial L(x, \mu)).
\]
4 Interior Penalty Method

Consider the oriented distance [12] defined for the closed convex cone \(-Y_+\) by:
\[
\Delta_{-Y_+}(y) = d(y, -Y_+) - d(y, Y \setminus -Y_+).
\]

This function is convex positively homogeneous, 1-Lipschitzian, \(-Y_+\)-nondecreasing and characterizes the boundary, interior and complementary of \(-Y_+\):
\[
\partial(-Y_+) = \{y \in Y : \Delta_{-Y_+}(y) = 0\}, \quad \text{int}(-Y_+) = \{y \in Y : \Delta_{-Y_+}(y) < 0\}, \quad Y \setminus (-Y_+) = \{y \in Y : \Delta_{-Y_+}(y) > 0\}.
\]

It is also known [11] that the function \(\Delta_{-Y_+}\) is simply given for all \(y \in Y\) by:
\[
\Delta_{-Y_+}(y) = \sup_{\mu \in Y_+^*, \|\mu\|=1} \langle \mu, y \rangle.
\]

The feasible set \(S\) defined by (1) can now be written under scalarized form:
\[
S = \{x \in X : \Delta_{-Y_+}(G(x)) \leq 0\}.
\]

The classical logarithmic penalty function applied with \(f\) over \(S\) becomes:
\[
f_n = f - r_n \ln \circ (-\Delta_{-Y_+} \circ G), \quad r_n \searrow 0^+.
\]

Standard theorem for this penalization applies under the classical hypotheses of (inf-)compactness type. We shall extend the convergence for the class \(\mathcal{F}_{SB}^{\Delta\beta}\).

The result below is needed.

THEOREM 3. [7] Let \(Z\) be a topological vector space ordered by a convex cone \(Z_+\), \(f : X \to \mathbb{R} \cup \{+\infty\}\) be convex proper, \(H : X \to Z \cup \{+\infty\}\) be \(Z_+\)-convex proper, \(g : Z \to \mathbb{R} \cup \{+\infty\}\) be convex proper \(Z_+\)-nondecreasing and one of the following qualification conditions (resp. of Moreau-Rockafellar and Attouch-Brézis type) hold:

\[
\begin{align*}
&\begin{cases}
X, Z \text{ are locally convex spaces, } \\
g \text{ is finite and continuous at some point of } H(\text{dom } f \cap \text{dom } H),
\end{cases} \\
or, \\
&\begin{cases}
X, Z \text{ are Fréchet spaces, } H \text{ is sequentially } Z_+\text{-l.s.c, } \\
\mathbb{R}_+[\text{dom } g - H(\text{dom } f \cap \text{dom } H)] \text{ is a closed vector subspace of } Z.
\end{cases}
\end{align*}
\]

Then \(\forall \bar{x} \in X\),
\[
\partial(f + g \circ H)(\bar{x}) = \bigcup_{\mu \in \partial g(H(\bar{x}))} \partial(f + \mu \circ H)(\bar{x}).
\]

We derive the same result in concordance with our data.

REMARK 4. The above formula still holds if we assume that \(g\) is \(Z_+\)-nonincreasing and \(H : X \to Z \cup \{-\infty\}\) is \(Z_+\)-concave sequentially \(Z_+\)-u.s.c. It suffices to apply Theorem 3 to the functions \(g \circ -Id_Z\) (\(Id_Z\) is the identity mapping) and \(-H\) (instead of \(g\) and \(H\)) observing that
\[
\partial(g \circ -Id_Z)(-H(\bar{x})) = -\partial g(H(\bar{x})).
\]
Recall for $\psi : Y \to \mathbb{R} \cup \{+\infty\}$ convex proper and $y \in \text{dom} \psi$, the Young-Fenchel's equality:

$$ y^* \in \partial \psi(y) \iff \psi(y) + \psi^*(y^*) = \langle y^*, y \rangle $$

(6)

the function $\psi^* : Y^* \to \mathbb{R} \cup \{+\infty\}$ being the Legendre-Fenchel's conjugate of ψ defined by $\psi^*(y^*) = \sup_{y \in Y} \{ \langle y^*, y \rangle - \psi(y) \}$. We have that $\psi^{**} = \psi$ if $\psi \in \Gamma_0(Y)$ (see e.g. [5]).

Remark 5. As first consequences, we have

1. $\Delta_{-Y_+}^* = \delta_{\overline{\text{co}(Y_+^* \cap \partial B)}}$,
2. $\partial \Delta_{-Y_+}(\bar{y}) = \{ \mu \in Y^* : \langle \mu, \bar{y} \rangle = \Delta_{-Y_+}(\bar{y}), \mu \in \overline{\text{co}(Y_+^* \cap \partial B)} \}$ for all $\bar{y} \in Y$.

Proof. 1. By (5) (which holds for any convex cone) we have for every $y \in Y$,

$$ \Delta_{-Y_+}(y) = \sup_{\mu \in Y_+^* \cap \partial B} \langle \mu, y \rangle = \sup_{\mu \in \overline{\text{co}(Y_+^* \cap \partial B)}} \langle \mu, y \rangle = \sup_{\mu \in \overline{\text{co}(Y_+^* \cap \partial B)}} \{ \langle \mu, y \rangle - \delta_{\overline{\text{co}(Y_+^* \cap \partial B)}}(\mu) \} = \delta_{\overline{\text{co}(Y_+^* \cap \partial B)}}^*(y) $$

The indicator function $\delta_{\overline{\text{co}(Y_+^* \cap \partial B)}} \in \Gamma_0(Y^*)$ because $\overline{\text{co}(Y_+^* \cap \partial B)}$ is a nonempty convex closed set in Y^*. Hence $\delta_{\overline{\text{co}(Y_+^* \cap \partial B)}}^* = \delta_{\overline{\text{co}(Y_+^* \cap \partial B)}}^* = \Delta_{-Y_+}^*$.

2. This assertion follows directly from (6) and the fact that $\text{dom} \Delta_{-Y_+} = Y$.

Remark 5. As first consequences, we have

1. $\partial \Delta_{-Y_+}(\bar{y}) \subset Y_+^* \setminus \{0\} \cap B$ for all $\bar{y} \in Y$, if $\text{int} Y_+ \neq \emptyset$.

Indeed, $Y_+^* \cap \partial B \subset Y_+^* \cap B$. Now, if $0 \in \partial \Delta_{-Y_+}(\bar{y})$ then we get $\Delta_{-Y_+}(y) \geq 0$ ($\forall y \in Y$) contradicting the fact that $\Delta_{-Y_+}(y) < 0$ ($\forall y \in -\text{int} Y_+$).

2. $\partial \Delta_{-Y_+}(\bar{y}) = \{ \mu \in Y^* : \mu \in Y_+^*, \|\mu\| = 1, \langle \mu, \bar{y} \rangle = \Delta_{-Y_+}(\bar{y}) \}$ for all $\bar{y} \notin -Y_+$.

Indeed, according to the first remark, it suffices to show that $\|\mu\| \geq 1$. But this follows easily from the fact that $0 < \Delta_{-Y_+}(\bar{y}) = \langle \mu, \bar{y} \rangle \leq \|\mu\| \Delta_{-Y_+}(\bar{y})$.

Proposition 1. With f proper convex and G proper Y_+-convex, we have, $\forall n$,

$$ \partial f_n(\bar{x}) = \bigcup_{\mu \in \overline{\text{co}(Y_+^* \cap \partial B)} \setminus \{|(\mu, G(\bar{x}))| = \Delta_{-Y_+}(G(\bar{x})) \}} \partial(f - \frac{r_n}{\Delta_{-Y_+}(G(\bar{x}))} \mu \circ G)(\bar{x}). $$

(7)

Proof. If $\bar{x} \notin \text{dom} f_n$ then by definition $\partial f_n(\bar{x}) = \emptyset$. By (2) we have that

$$ \bar{x} \in \text{dom} f_n = \text{dom} f \cap \{x \in X : G(x) \in -\text{int} Y_+ \}. $$

(8)

According to Remark 4, the functionals f, $g = -r_n \ln$ and $H = -\Delta_{-Y_+} \circ G$ satisfy the hypotheses of Theorem 3 with the Moreau-Rockafellar condition. Hence

$$ \partial f_n(\bar{x}) = \partial(f - \frac{r_n}{\Delta_{-Y_+}(G(\bar{x}))} \Delta_{-Y_+} \circ G)(\bar{x}) $$
The functions \(f, \ g = -\frac{r_n}{\Delta - \text{Y}_+ - \text{Y}_+} \Delta - \text{Y}_+ \) and \(H = G \) also satisfy the hypotheses of Theorem 3 with the Moreau-Rockafellar type condition. Hence

\[
\partial f_n(\bar{x}) = \bigcup_{\mu \in -\frac{r_n}{\Delta - \text{Y}_+ - \text{Y}_+} \partial \Delta - \text{Y}_+ (G(\bar{x}))} \partial (f + \mu \circ G)(\bar{x}).
\]

Finally by using Lemma 1, we obtain the formula of the proposition.

The convergence of this penalty method for the class \(\mathcal{F}_\mathcal{AS} \) can now be announced as follows.

THEOREM 4. Let \(f \in \mathcal{F}_\mathcal{AS} \). Then, every diagonally stationary sequence for \((f_n) \) is minimizing for \(f|_\mathcal{S} \), i.e.,

\[
d(0, \partial f_n(x^n)) \to 0 \Rightarrow f(x^n) \to \inf \limits_\mathcal{S} f(x).
\]

PROOF. The proof consists in showing that \((x^n) \) is a \((\tilde{K}T)\) sequence for \(f|_\mathcal{S} \). Indeed, as in 2°) Remark 1, \(x^n \in \text{dom} f_n \) for all \(n \). So by (7, 8) and 1°) Remark 5, we can deduce the existence of a sequence of Lagrange multipliers \(\mu^n \subset Y_+^* \setminus \{0\} \) such that,

\[
\begin{cases}
 d(0, \partial L(x^n, -\frac{r_n}{\Delta - \text{Y}_+} G(x^n)) \mu^n)) \to 0, \\
 \langle \mu^n, G(x^n) \rangle = \Delta - \text{Y}_+ (G(x^n)) \quad (\forall n), \\
 G(x^n) \in -\text{int} Y_+^* \quad (\forall n).
\end{cases}
\]

Renaming \(-\frac{r_n}{\Delta - \text{Y}_+} G(x^n)) \mu^n \) by \(\mu^n \) which still lies in the cone \(Y_+^* \setminus \{0\} \), and using the fact that \((r_n) \searrow 0^+ \), we obtain the asymptotic complementarity condition:

\[
\langle \mu^n, G(x^n) \rangle = -r_n \not\searrow 0^-.
\]

So \((x^n) \) is a \((\tilde{K}T)\) sequence. It follows by Theorem 2 that \((x^n) \) is minimizing for \(f|_\mathcal{S} \).

Acknowledgments. The authors would like to thank the reviewer very much for his useful suggestion and his considerable comments.

References

