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Abstract

In this work we consider an auxiliary system of the shallow water equations in
which the first equation is written in a conserved form. So a five dimensional sym-
metry algebra is obtained. Similarity reductions are performed for each generator
and non trivial exact solutions are given.

1 Introduction

The basic idea of Lie symmetry method is to reduce the order or the number of inde-
pendent variables of differential equations under consideration as much as possible so
that the integration can be done easily.

The basic shallow water equations on a flat bottom are written in the following
form:

(1)

where u = u(z,t) is the velocity and h = h(z,t) the depth of the water. Here the
indices denote the derivatives with respect to appropriate arguments. The system (1)
is an important model of mathematical physics with applications in different fields as
for example in engineering, hydraulics [5], topography, etc.

In applied sciences the system (1) describes new physical phenomena by including
additional terms or with boundary conditions, for example: the circulation of bodies
of water in coastal zone, nonlinear transformation of the swell, morphodynamic evolu-
tion of the coast, environmental protection (pollution at sea, follow-up of rejections in
aquatic environment). In experimental approach many problems are treated by means
of one dimensional models.

This work is organized as follows. In the next section, applying Lie’s algorithm
method to an auxiliary system associated to (1), we obtain Lie point symmetries ad-
mitted by the system (1). Commutation relations between generators are also given.

hy +uhy +hu, = 0,
U + Uly + hy = 0.

*Mathematics Subject Classifications: 35L05, 58Z05.

TGroupe d’algebre et applications, Faculté des Sciences et Techniques Errachidia , B.P 509, Bouta-
lamine Errachidia, Morocco

iDépartement de mathématiques, Groupe d’algebre et applications, Faculté des Sciences et Tech-
niques Errachidia , B.P 509, Boutalamine Errachidia, Morocco

281



282 Lie Symmetries Analysis of Shallow Water Equations

In section 3, using the obtained Lie point symmetries we reduce the shallow water
equations to a family of different systems from which it arises some nontrivial exact
solutions.

2 The Symmetry Groups of (1)

As the first equation in (1) can be written in conserved form, i.e.,

{ he + (uh)g = 0,
! (2)
ur+ (% +h), = 0,
then its associated auxiliary system is given by
Vg = h,
Vt = —uh, (3)
Uy + Uty + hy = 0.

By V we mean a vector field and let Pr(DV be the first prolongation of V.. So if V' is

given locally by

0 0 0 0 0

where £, 7, p, H and G are infinitesimal depending on the independent variables (z,t),
and the dependent variables u, h and potential v, then

+<pti—|—Hm 0 g2 ¢ 9 (gl (5)

P
Pry = @ .
mV =Vt our on. o, a0, T ou

Ougy

Using the first prolongation formulae [1, 2, 3] and the system (3) we get

‘Pm = Yz + h‘Pv + (‘Pu - fm - hfv +ung + Uhnv)um + (‘Ph + Mz + hnv)hm
+ (=& + nu A+ unn)ughe + (=& + unu)ul + nuhs,
o' = @y —uhpy + (—upy — & + uh&y + un — wPhny)ug + (—pu + e — ubny) he

+ (Gu = 2unu)uzhe + onhe + (—&n + unp)ughy + (u€y — u277u)u925
nuhi + nhhmht;

H* = Hy+hH,+ (Hp — & — h&)he + (=ne — hw) by — nnhahy
—  Muughy + Hyu, — fhhi — &Euughy,
G* = G+ hG, —h& — h2& + uhng + uh’n, + (G, — k&, + uhnp)hy
+ (Gy — h&y + uhny)ug,
G' = Gi—uhGy +uh?€, + uhn, — u?h®n, — h& + (—uGy + uh&y — u?hny)ug

In order that the generator V leaves invariant the system (3), we need the symmetry
conditions to be satisfied:
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where

El = Uxg — h,,
Ey = v+ uh,
Es = wup+uug + hg.

The symmetry conditions lead us to

—H+G7Ei:0 = 0,
ho +ul + GYp,
(pt_|_Hm_|_um<p—|—u<pg/cEi:0 = 0, 1=1,2,3.

Il
=
—~
-3
~—

Substituting ¢, ..., G* by their expressions in the above system and equating the co-
efficients of monomials in the first partial derivatives of w and h, we get the following
system of determining equations

Nu="1n=& =& =Gu=Gnr = 0,
—H + Gy + hG, — h&, — h%E, + uhm, +uh®n, = 0,
hp +uH + Gy — uhG., + uh?&, + uhn, — hé — u?h®n, = 0,
o+ Hy +hHy +up, = 0,
—&tun+ Hy+ @ —ubs +u’n, = 0,
—pu + Nt + Hp — & — h&y +upp +un, = 0,
Oh =Nz —hny = 0.
Consequently, we get a six parameter (ai,...,ag) group admitted by the system (3)

with infinitesimals

= a4t + aszx + ay,
= ast+ az,

= (as—as)u+ ay,
2(az — as)h,

= (3as — 2asv + ag,

Qe = m
Il
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where ayq, ..

.,ag are arbitrary constants.

Lie Symmetries Analysis of Shallow Water Equations

Hence, the Lie symmetry algebra of the

auxiliary system (3) is spanned by the six generators

%1
Vs
Vs
1
Vs

Ve

2.0
Or  Ou’

0 0 0 0
xa—x +u8_u +2h% +3v%,
0
a_xa

0 0 0 0
9

ot’

0
%.

Because the infinitesimals &, 7, ¢ and h do not depend explicitly on the potential v,

i.e.,
% ’ + @ ’ + a_<P ’ =0
v v ow)
we see that V;,7 =1, ..., 6, define only point symmetries admitted by the shallow water

equations with generators

0
Y1 = —
1 ox )
0
Yo = t=
2 ot )
0 0 0
0 0
Yo = t—+ —
4 Ox + ou’
0 0 0
Ys = t——u——2h—.
’ ot “ou on
Commutation relations between these vector fields are given by the following table.
The entry in row ¢ and column j representing [Y;, Y;]:
i Yo Y5 Yy Y
Yi| 0 0 Y1 0 0
Y1 0 0 0 Y Y
Y; | -1 0 0 -Y 0
Yo 0 -1 ' Yiu 0 Y
Ys 0 -Y> 0 Yy 0

Consequently, the symmetry algebra obtained in [4] by direct construction of Lie point
symmetry admitted by shallow water equations is a subalgebra of the algebra spanned
by Y;,i=1,...,5, constructed by passing through the potential system (3).
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3 Symmetry Reduction

It is clear that the shallow water equations do not admit potential symmetries, that
is, the infinitesimals £, 77 and ¢ do not depend explicitly on the potential v. From the
vector fields obtained in the previous section, we conclude that all point symmetries
admitted by the shallow water equations are of projectable type in which the action
on the independent variables do not depend on the dependent variables.

3.1 Reduction with Y;

The similarity variables are:
y =t, Z = u, and W = h.

Substituting similarity variables in system (1) and using chain rule imply that v and
h must be constants. Thus a trivial constant solutions are obtained.

3.2 Reduction with Y5

The similarity variables are:
y =, Z = u, and W = h.

Similarly to the previous case we obtain the constant solutions u and h.

3.3 Reduction with Y;

As the symmetry is

0 0 0

the similarity variables are precisely
X =t, Y =z u, and W =z 1he.
Then by chain rule, we get
u=2xY, ut:xY/, Uy =Y,
h=2?W?2, = hy=222WW,  hy=2aW?2

where the prime denotes the derivative with respect to X. Substituting in (1), we
obtain the reduced system

oW +3YW = 0,
Y +Y2+2W2 = 0.

’

Since the first equation implies Y = —%, from the second equation we get

(W)
W

"

W :g +3W3,
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If we put W = ¢!, then ¢ satisfies the ordinary differential equation

p = —3W3(p) - gww/-
The general solution of this equation is
v? -1
<p(W)——3/ﬁdv, v=WT3.
Case.1: ¢ = 0. In this case ¢ = —g>. Since X = (W) thus W = —z%. Conse-

quently, the exact solution of the shallow water equations obtained in this case is:

x

2
u(x,t):§%, and b t) = (o

)%
Case.2: ¢ # 0. In this case

{ e(W) = -8 /T+&%+ —23\1/5 arctan (‘/?Ev) ,

1

v = WTs.

The implicit solutions of the shallow water equations defined by the inverse function
of ¢, cannot be found by the symmetry algebra obtained in [4]. Then it gives arise of
a new exact solution.

3.4 Reduction with Y,

The similarity variables are

X =1, Y=h and W =2z — tu.

Chain rule implies

w = —t 2o+t 2W -t W, wp =t

’

h =Y, h, = 0.
Substituting in (1), we obtain
tY' +Y = 0,
w' = 0.
The exact solutions constructed in this case are

Tr—a

u(aw,t) =2,

b
and h(z,t) = e

where a and b are arbitrary constants.
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3.5 Reduction with Y;
The symmetry Y5 is given by

0 0 0

the invariants are
, and W = t%h.
Using chain rule, we get
u = —t72Y, Uy = tilY/,
hy = —2t3W,  hy =t 2W .
Substituting in (1), we obtain the reduced system :

—W+ (YW) = 0,
—“Y+YY +W = o

The general solutions of the above system are

W= (AX+4d)°,
Y = X +d,

where d is an arbitrary constant. Consequently, the exact solution of the shallow water
equations obtained in this case is

d d\*
u(x,t):x;; , and h(x,t)—(x;; ) .

4 Conclusion

In this work we concentrated on the one-dimensional shallow water equations. Using
group analysis all similarity reductions of this system are found. Consequently, con-
struction of some exact solutions was done. The search for Lie point symmetries of
the shallow water equations was done in [4] but without using the system (3). The
symmetry algebra obtained in [4] is a subalgebra which is obtained here. The method
used above for determining new symmetries for shallow water equations arising from
the first equation can also be extended to the second equation of (1). The difficulty
is that the system of determining equations is more complicated than one obtained by
considering the first equation. If we look only for projectable symmetries, the system
of determining equations is completely solved and it does yield new symmetries.
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