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Abstract

In [3] M. Aamri and D. El Moutawakil proved two general common fixed point
theorems for self-mappings on semi-metric space. Here we show that many fixed
point theorems which use contractive conditions of integral type can be obtained
as corollaries.

1 Introduction

Contraction mapping principle, formulated and proved in the Ph. D. dissertation of
S. Banach in 1920 which was published in 1922, is one of the most important theorems
in classical functional analysis because it gives:

1. the existence and uniqueness of fixed point,
2. method for obtaining approximative fixed points, and
3. error estimates for approximative fixed point obtained by 2.
There are many generalizations and partial generalizations of the Banach principle.

One such generalization is formulated in semi-metric spaces initiated by M. Fréchet,
K. Menger [11], E. W. Chittenden [5] and W. A. Wilson [16]. In [6] Cicchese introduced
the notion of a contraction mapping in semi-metric spaces and proved the first fixed
point theorem for this class of spaces. Further fixed point results for this class of spaces
were obtained by J. Jachymski, J. Matkowski and T. Swaitkowski [10], T. L. Hicks,
B. E. Rhoades [8], M. Aamri and D. El Moutawakil [3], J. Zhu, Y. J. Cho, S. M. Kang
[18], D. Miheţ [12], M. Imdad, J. Ali and L. Khan [9], A. Aliouche [1], etc.

In 2002 A. Branciari [4] introduced the notion of contractions of integral type and
proved fixed point theorem for this class of mappings. Further results on this class
of mappings were obtained by B. E. Rhoades [14], A. Aliouche [1, 2], A. Djoudi and
F. Merghadi [7] and many others. Zhang [17] gave new generalized contractive type
condition in which the integral operator is replaced by a monotone nondecreasing func-
tion.

In [3] M. Aamri and D. El Moutawakil proved two general common fixed point
theorems for self-mappings on semi-metric space. We intend to show that many fixed
point theorems which used contractive conditions of integral type can be obtained as
corollaries of these results.
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2 Preliminary Notes

Let X be a non-empty set and d : X2 → [0,∞). (X, d) is semi-metric space (symmetric
space) if and only if it satisfies:

(W1) d(x, y) = 0 if and only if x = y; and

(W2) d(x, y) = d(y, x) if and only if x = y for any x, y ∈ X.

Let (X, d) be a semi-metric (symmetric) space, r > 0 and x ∈ X, let B(x, r) =
{y ∈ X : d(x, y) < r}. Let τ be the weakest topology on X such that the family
{B(x, r) : x ∈ X, r ∈ [0,∞)} is the base for τ . Note that for every {xn} ⊆ X and
x ∈ X, limd(xn, x) = 0 if and only if xn → x in the topology τ . A sequence {xn} ⊆ X

is said to be a Cauchy sequence, if for every given ε > 0, there exists a positive integer
n0 such that d(xm, xn) < ε for all m, n ≥ n0. A semi-metric space (X, d) is complete
if and only if each its Cauchy sequence is convergent.

Let (X, d) be a semi-metric (symmetric) space. Then:

• (X, d) satisfies the property (W3) if and only if limd(xn, x) = 0 and limd(xn, y) =
0 imply x = y;

• (X, d) satisfies the property (W4) if and only if limd(xn, x) = 0 and limd(xn, yn) =
0 imply limd(yn, x) = 0;

• (X, d) satisfies the property (HE) if and only if limd(xn, x) = 0 and limd(yn, x) =
0 imply limd(xn, yn) = 0;

• (X, d) satisfies the property (W) if and only if limd(xn, yn) = 0 and limd(yn, zn) =
0 imply limd(xn, zn) = 0.

All this conditions can be used as partial replacement for the triangle inequal-
ity. (W3) and (W4) were introduced by Wilson [16], (HE) by M. Aamri and D. El
Moutawakil [3] and (W) by D. Miheţ [12]. Note that (W ) ⇒ (W4) ⇒ (W3) and
(W ) ⇒ (HE).

Let X be a nonempty set and F, G : X → X arbitrary mapping. x ∈ X is a fixed
point of F if x = Fx. y ∈ X is a coincidence point for F and G if and only if Fy = Gy.

Let (X, d) be a semi-metric space and F, G : X → X. Then:

• F and G are said to be compatible if and only if

limd(FGxn, GFxn) = 0

whenever {xn} is a sequence in X such that

limd(Fxn, t) = limd(Gxn, t) = 0

for some t ∈ X;

• F and G are said to be weakly compatible if and only if they commute at their
coincidence point; i.e., if Fx = Gx then FGx = GFx;
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• F and G are said to satisfy property (E.A) if there exists a sequence {xn} such
that

limFxn = limGxn = t

for some t ∈ X.

By Φ we denote the set of all real functions ϕ : [0,∞) → [0,∞) with the following
properties: (a) ϕ(0) = 0; (b) ϕ(r) < r for all r > 0; (c) limt→r+ϕ(t) < r for any r > 0.

LEMMA 1. (M. Tasković [15]) Let ϕ ∈ Φ, x0 > 0 and {xn} be a sequence defined
by xn = ϕn(x0). Then limxn = 0.

By Λ we denote the set of all nonnegative, Lebesgue-integrable, real functions λ :
[0,∞) → [0,∞) such that

0 <

∫ ε

0

λ(t)dt < ∞ for all ε > 0.

By F we denote the set of all continuous, monotone nondecreasing, real functions
F : [0,∞) → [0,∞) such that F (x) = 0 if and only if x = 0.

In [17] it was proved:

LEMMA 2 (X. Zhang [17]). Let F ∈ F and {εn} ⊆ [0,∞). Then from F (εn) → 0
follows that εn → 0.

In [3] M. Aamri and D. El Moutawakil proved the following common fixed point
theorems.

THEOREM 1 (M. Aamri and D. El Moutawakil [3]). Let (X, d) be a semi-metric
(symmetric) space which satisfies properties (W3) and (HE). Let ϕ ∈ Φ and let A, B :
X → X be self-mappings of X such that:

1) d(Ax, Ay) ≤ ϕ(max{d(Bx, By), d(Bx, Ay), d(Ay, By)}) for any x, y ∈ X;

2) A and B are weakly compatible;

3) A and B satisfy the property (E.A);

4) AX ⊆ BX.

If the range of one of the mappings A or B is a complete subspace of X, then A and
B have a unique common fixed point.

THEOREM 2 (M. Aamri and D. El Moutawakil [3]). Let (X, d) be a semi-metric
(symmetric) space which satisfies properties (W4) and (HE). Let ϕ ∈ Φ and let
A, B, S, T : X → X be self-mappings of X such that:

1) d(Ax, By) ≤ ϕ(max{d(Sx, Ty), d(Sx, By), d(By, Ty)}) for any x, y ∈ X;

2) (A, T ) and (B, S) are weakly compatible;

3) (A, S) or (B, T ) satisfies the property (E.A);

4) AX ⊆ TX and BX ⊆ SX.

If the range of one of the mappings A, B, S or T is a complete subspace of X, then A,
B, S and T have a unique common fixed point.

In this paper we present some new applications of these theorems.
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3 Results

We need the following Lemma.

LEMMA 3. Let (X, d) be a semi-metric space, x ∈ X, {xn} ⊆ X and F ∈ F .
Define d∗ : X2 → [0,∞) by

d∗(x, y) = F (d(x, y)), for any x, y ∈ X.

Then:
1) (X, d∗) is semi-metric space;
2) {xn} is a Cauchy sequence in (X, d) if and only if it is a Cauchy sequence in (X, d∗);
3) limd(xn, x) = 0 if and only if limd∗(xn, x) = 0.

PROOF. To see 1), note that (W1) follows from d(x, y) = 0 ⇔ F (d(x, y)) = 0, and
(W2) follows from F (d(x, y)) = F (d(y, x)).

Next, let {xn} be a Cauchy sequence in (X, d). Then

lim
n,k→∞

d(xn+k, xn) = 0,

which implies
lim

n,k→∞
F (d(xn+k, xn)) = F (0) = 0

because F is continuous. So {xn} is a Cauchy sequence in (X, d∗).
Let {xn} be a Cauchy sequence in (X, d∗). Then

lim
n,k→∞

F (d(xn+k, xn)) = 0.

By Lemma 2 we get that
lim

n,k→∞
d(xn+k, xn) = 0,

which implies that {xn} is a Cauchy sequence in (X, d).
Finally, let limd(xn, x) = 0. It follows that limF (d(xn, x)) = F (0) = 0, because F

is continuous. Let limd∗(xn, x) = 0. By Lemma 2 it follows that limd(xn, x) = 0.

Now we shall prove our next result.

THEOREM 3. Let (X, d) be a semi-metric space and F ∈ F . Define d∗ : X2 →
[0,∞) by d∗(x, y) = F (d(x, y)) for any x, y ∈ X. Then

- (X, d) satisfies the property (W3) if and only if (X, d∗) satisfies this property;
- (X, d) satisfies the property (W4) if and only if (X, d∗) satisfies this property;
- (X, d) satisfies the property (HE) if and only if (X, d∗) satisfies this property;
- (X, d) satisfies the property (W) if and only if (X, d∗) satisfies this property;
- (X, d) is complete if and only if (X, d∗) is complete.

PROOF. Let (X, d) be a semi-metric space which satisfies the property (W3). Let
limF (d(xn, x)) = 0 and limF (d(xn, y)) = 0. By Lemma 2 it follows that limd(xn, x) =
0 and limd(xn, y) = 0. By (W3) we get that x = y. If (X, d∗) satisfies (W3), then
from limd(xn, x) = 0 and limd(xn, y) = 0 it follows that limF (d(xn, x)) = F (0) = 0
and limF (d(xn, y)) = F (0) = 0, because F is continuous. So x = y, because (X, d∗)
satisfies (W3).
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Let (X, d) be a semi-metric space which satisfies (W4). Let limF (d(xn, x)) = 0 and
limF (d(xn, yn)) = 0. By Lemma 2 it follows that limd(xn, x) = 0 and limd(xn, yn)
= 0. By (W4) we get that limd(yn, x) = 0, which implies limF (d(yn, x)) = F (0) = 0,
because F is continuous. If (X, d∗) satisfies (W4), then from limd(xn, x) = 0 and
limd(xn, yn) = 0 it follows that limF (d(xn, x)) = F (0) = 0 and limF (d(xn, yn)) =
F (0) = 0, because F is continuous. So limF (d(yn, x)) = 0, because (X, d∗) satisfies
(W4).

Let (X, d) be a semi-metric space which satisfies (HE). Let limF (d(xn, x)) = 0 and
limF (d(yn, x)) = 0. By Lemma 2 it follows that limd(xn, x) = 0 and limd(yn, x) = 0.
By (HE) we get that limd(xn, yn) = 0, which implies limF (d(xn, yn)) = F (0) = 0,
because F is continuous. If (X, d∗) satisfies (HE), then from limd(xn, x) = 0 and
limd(yn, x) = 0 it follows that limF (d(xn, x)) = F (0) = 0 and limF (d(yn, x)) =
F (0) = 0, because F is continuous. So limF (d(xn, yn)) = 0, because (X, d∗) satisfies
(HE).

Let (X, d) be a semi-metric space which satisfies (W). Let limF (d(xn, yn)) = 0 and
limF (d(yn, zn)) = 0. By Lemma 2 it follows that limd(xn, yn) = 0 and limd(yn, zn) =
0. By (W) we get that limd(xn, zn) = 0, which implies limF (d(xn, zn)) = F (0) = 0,
because F is continuous. If (X, d∗) satisfies (W), then from limd(xn, yn) = 0 and
limd(yn, zn) = 0 it follows that limF (d(xn, yn)) = F (0) = 0 and limF (d(yn, zn))
= F (0) = 0, because F is continuous. So limF (d(xn, zn)) = 0, because (X, d∗) satisfies
(W).

The last statement of this theorem (equi-completeness of (X, d) and (X, d∗)) follows
from Lemma 3.2.

From Theorem 3 it follows:

THEOREM 4. Let (X, d) be a metric space and F ∈ F . Define d∗ : X2 → [0,∞)
by d∗(x, y) = F (d(x, y)) for any x, y ∈ X. Then (X, d∗) is a semi-metric space which
satisfies the property (W).

PROOF. From limF (d(xn, yn)) = 0 and limF (d(yn, zn)) = 0 by Lemma 2 it follows
that limd(xn, yn) = 0 and limd(yn, zn) = 0. Hence limd(xn, zn) = 0, because

d(xn, zn) ≤ d(xn, yn) + d(yn, zn) for each n.

So limF (d(xn, zn)) = 0, because F is continuous.

Now we shall prove our next result.

THEOREM 5. Let (X, d) be a semi-metric (symmetric) space which satisfies prop-
erties (W3) and (HE). Let ϕ ∈ Φ, F ∈ F and let A, B : X → X be self-mappings of X

such that:

1) F (d(Ax, Ay)) ≤ ϕ(F (max{d(Bx, By), d(Bx, Ay), d(Ay, By)})) for any x, y ∈ X;

2) A and B are weakly compatible;

3) A and B satisfy the property (E.A);

4) AX ⊆ BX.

If the range of one of the mappings A or B is a complete subspace of X, then A and
B have a unique common fixed point.



I. D. Arand-elović and D. S. Petković 259

PROOF. Define d∗ : X2 → [0,∞) by d∗(x, y) = F (d(x, y)), for any x, y ∈ X, we
have

F (max{d(Sx, Ty), d(Sx, By), d(By, Ty)})

= max{F (d(Sx, Ty)), F (d(Sx, By)), F (d(By, Ty))})

= max{d∗(Sx, Ty), d∗(Sx, By), d∗(By, Ty)}),

because F is monotone nondecreasing function. Hence

d(Ax, By) ≤ ϕ(max{d∗(Sx, Ty), d∗(Sx, By), d∗(By, Ty)}) for any x, y ∈ X.

Therefore, the hypotheses of Theorem 1 are satisfied.

Let λ ∈ Λ. If in Theorem 5 F is defined by

F (x) =

∫ x

0

λ(t)dt, for any x ≥ 0,

then this Theorem reduces to the following result of A. Aliouche [1] - Corollary 1.

COROLLARY 1. (A. Aliouche [1]). Let (X, d) be a semi-metric (symmetric) space
which satisfies properties (W3) and (HE). Let ϕ ∈ Φ, λ ∈ Λ and let A, B : X → X be
self-mappings of X such that:

1)
∫ d(Ax,Ay)

0
λ(t)dt ≤ ϕ(

∫ max{d(Bx,By),d(Bx,Ay),d(Ay,By)}

0
λ(t)dt) for any x, y ∈ X;

2) A and B are weakly compatible;
3) A and B satisfy the property (E.A);
4) AX ⊆ BX.

If the range of one of the mappings A or B is a complete subspace of X, then A and
B have a unique common fixed point.

Now we shall prove our next result.

THEOREM 6. Let (X, d) be a semi-metric (symmetric) space which satisfies prop-
erties (W4) and (HE). Let ϕ ∈ Φ, F ∈ F and let A, B, S, T : X → X be self-mappings
of X such that:

1) F (d(Ax, By)) ≤ ϕ(F (max{d(Sx, Ty), d(Sx, By), d(By, Ty)})) for any x, y ∈ X;
2) (A, T ) and (B, S) are weakly compatible;
3) (A, S) or (B, T ) satisfies the property (E.A);
4) AX ⊆ TX and BX ⊆ SX.

If the range of one of the mappings A, B, S or T is a complete subspace of X, then A,
B, S and T have a unique common fixed point.

PROOF. Define d∗ : X2 → [0,∞) by d∗(x, y) = F (d(x, y)), for any x, y ∈ X. We
have

F (max{d(Sx, Ty), d(Sx, By), d(By, Ty)})

= max{F (d(Sx, Ty)), F (d(Sx, By)), F (d(By, Ty))}) =

= max{d∗(Sx, Ty), d∗(Sx, By), d∗(By, Ty)}),

because F is monotone nondecreasing function. Hence

d(Ax, By) ≤ ϕ(max{d∗(Sx, Ty), d∗(Sx, By), d∗(By, Ty)}) for any x, y ∈ X.
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Therefore, the hypotheses of Theorem 2 are satisfied.

Let λ ∈ Λ. If in Theorem 6 F is defined by

F (x) =

∫ x

0

λ(t)dt, for any x ≥ 0,

then this Theorem reduces to the following result of A. Aliouche [1] - Theorem 1.

COROLLARY 2 (A. Aliouche [1]). Let (X, d) be a semi-metric (symmetric) space
which satisfies properties (W4) and (HE). Let ϕ ∈ Φ, λ ∈ Λ and let A, B, S, T : X → X

be self-mappings of X such that:

1)
∫ d(Ax,By)

0
λ(t)dt ≤ ϕ(

∫ max{d(Sx,Ty),d(Sx,By),d(By,Ty)}

0
λ(t)dt) for x, y ∈ X;

2) (A, T ) and (B, S) are weakly compatibles;
3) (A, S) or (B, T ) satisfies the property (E.A);
4) AX ⊆ TX and BX ⊆ SX.

If the range of one of the mappings A, B, S or T is a complete subspace of X, then A,
B, S and T have a unique common fixed point.
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