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Some Sharp Simpson Type Inequalities And
Applications*
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Abstract

Some sharp Simpson type inequalities are proved. Applications in numerical
integration are also considered.
1 Introduction
Given a real function of a real variable, let us write

fals) = sty +4 (“52) + 106).

In [1], Ujevié proved the following interesting sharp classical Simpson type inequality.

THEOREM 1. Let f : [a,b] — R be an absolutely continuous function whose
derivative f' € Lo(a,b). Then

(b-a)?

(P, 1)

<

b b—a
[ #ta)da =2 sl

where o(+) is defined by

b 2
dﬁ—ﬁ@—ﬁ;(/ﬂmﬁ @)

and

b 3
UW—Vﬁ@ﬂ.
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206 Simpson Type Inequalities

Inequality (1) is sharp in the sense that the constant % cannot be replaced by a smaller
one.
An application in numerical integration has been given as

THEOREM 2. Let 7 = {zg = a < z1 < --- < ,, = b} be a given subdivision of the

interval [a, b] such that h; = z;41 —x; = h = b;—a and let the assumptions of Theorem
1 hold. Then
b h'e b—a b—a
[ 1@t = § 3 fleien) < 2 ton() < Gtun() 3

where o, (f) and w,,(f) are defined by

() =Y J P8 18 ~ e — )]
1=0

and
wnl) = 6= a) 713~ -(F(B) — Fla))?]2.

Obviously, the inequality (3) seems as if it is complicated and not convenient to ob-
tain the error bounds. Recently in [2] the inequality (3) has been revised and improved
as

(b—a)?
6

n

o(f).

b h n—1
[ r@ds =53 sl <
e i=0

In this paper, we will further derive some sharp Simpson type inequalities. Appli-
cations in numerical integration are also considered.

2 Two More Sharp Classical Simpson Type Inequal-
ities
We begin with the following result.

THEOREM 3. Let f : [a,b] — R be such that f” is absolutely continuous on [a, b]
and f” € Ls[a,b]. Then we have

5

(b_a)E "
vag(f )- (4)

b b—a
| #a)da =2 )

Inequality (4) is sharp in the sense that the constant T 2\1/% cannot be replaced by a

smaller one.
PROOF. Let us define the function

(z—a)? _ (b=a)(z—=a) . c [a a b]
So(x) := 2 6 ’ 2 1 5
2() { (ac;b)2 4 (bfa)ﬁ(acfb), T ' (5)
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Integrating by parts, we obtain

b b b—a
[ 81" (@)da= [ flaydo - 2 el (©
By elementary calculus, we have
b b b—a)®
/ Sa(z)dx =0, / S2(x)dx = ( 4320> . (7)

Thus from (6), (7) and (2),we can easily get

/ab So(z) f" () dx

b b—a
[ fla)da - 22 sl

b b
[ s@lr@) - 5 [ 5@ dds

b z b ") — (a)1? 3
< (/a S%(x)d:c) {/a [f”(x)— F10) = f'(a) 2_5( )] d:c}
_ F%WPF{UqLJf@—fMW}%
[ 4320 2 b—a
(b_a)% 1
12730 Va(f").
We now suppose that (4) holds with a constant C' > 0 as

< CO(b—a)s/o(f7). 8)

b b—a
| #ta)dn =2 paln

We may find a function f : [a,b] — R such that f’ is absolutely continuous on [a, b] as

s-a)® _ (ba)-a)® atl
fl(z) = S — g if o fa, 52,
(x;b) 4 (bfa)l(;ib) ifx e (aTMa b]

It follows that
(xfa)2 B (b—a)(z—a) ifxe [CL, aTer];

f'(z) = 2 —a)(o—
(z) (x2b)2+ ® a>6(x b) if z € (252, 0].

By (5)-(7) and (9), it is not difficult to find that the left-hand side of the inequality (8)
becomes

9)

(b—a)
L.H.S.(8)= 10
sig) = L0 (10)
and the right-hand side of the inequality (8) is
C(b—a)®
RHS(8) = (0= (11)

12v/30
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From (8), (10) and (11), we find that C' > 121%, proving that the constant ﬁ is
the best possible in (4).

THEOREM 4. Let f : [a,b] — R be such that f” is absolutely continuous on [a, b]
and f"”" € La[a,b]. Then we have

(b >% "
=falt)| < oo /o () (12)

Inequality (12) is sharp in the sense that the constant m cannot be replaced by a
smaller one.

PROOF. Let us define the function

(¢—a)® _ (b—a)(z—a)? = [CL a_b]
S3(z) 1= 6 . 12 ’ b gy 13
3( ) { (x;b)g T (bfa)l(;*b)z, = (a b b]. ( )

Integrating by parts, we obtain

/ Sa(o)f" (o) do = = ftalt) ~ | " () do (14)

By elementary calculus, we have

b—a7
/33 Ydx =0, /33 = 2419;0 (15)

Thus from (14), (15) and (2),we can easily get

///

= f(alb)

5'3( ) | (@) = — ] ds
’ l b—a / ]
([ ssone) ([ -5

- LMQQO]I{UW%_W}%

IN

(b_a) "
S8V a(f").

We now suppose that (12) holds with a constant C' > 0 as

% falp)| < Co—a)F /(). (16)
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We may find a function f : [a,b] — R such that f” is absolutely continuous on [a, b] as

z—a)t b—a)(z—a)® . a
o= { S el
7zt 36 ifz e (GTH)’b]'

It follows that

z—a)® b—a)(z—a)? . a
fm(x) _ { 2 Gb))3 - ((b ))%(2 b))2 ifx € [CL, b%b] ) (17)
s T 12 if € (455, 0].

By (13)-(15) and (17), it is not difficult to find that the left-hand side of the inequality
(16) becomes

B (b—a)”
L.H.8.(16) = 5 oo (18)
and the right-hand side of the inequality (16) is
Cb—a)
R.H.S5.(16) = ———. 19
19 = "svics (1)

From (16), (18) and (19), we find that C' > W, proving that the constant m
is the best possible in (12).

REMARK 1. It should be noticed that the classical Simpson type inequalities (1),
(4) and (12) have been appeared in [3] without the proofs of their sharpness but with
some misprints.

3 Two Sharp Generalized Simpson Type Inequalities

In [4], we may find the identity

b b —a
[ sa@sowar = [ @it

a

f(alb)
(5]

(k—=1)(b—a)?** 0 (a+b
+kZ:2 3(2k + 1)1226-1 f ’“’( 5 ) (20)

where [251] denotes the integer part of 2=t and S,,(x) is the kernel given b
2 g 2 g Y
rz—a)” —a)(z—a)" "t . a
S (.CC) _ : n!) - - 6)(5171))! B ifz e [CL, %b] 3 (21)
ot | Lol e (a0

By elementary calculus, it is not difficult to get

b 0, n odd,
/ Sp(z)dx = _ (n=2)(b—a)™* (22)

Sntnpe s D even.
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and

_ _ b_ 2n+1
/5'2 (2n® —11n? +18n — 6)(b — a) ' (23)

9(4n? — 1)(nl)222n

THEOREM 5. Let f : [a,b] — R be such that f(~1) is absolutely continuous on
[a,b] and f() € Ly[a,b] where n is an odd integer. Then we have

/f

_ 1(b—a)"+%\/2n3—11n2+18n—6
- 3 27p! 4n? —1

[nfl

]
(k-1 (b—a)*t L (a+b
s+ 3 G e 1 ()

k=2

o(fm). (24)

2n3—11n24+18n—6

3 2%, YT cannot

Inequality (24) is sharp in the sense that the constant
be replaced by a smaller one.
PROOF. From (20), (22), (23) and (2),we can easily get

/ fla
— / ’ S (z) f™) (z) da
_ /S [<n> _bi_a/abf(m(t)dt] dz

(/ S2 (x ) (/ab [f(")(x) _ f("l)(bl)):if(nl)(a)r dx>%

(=14 18n— 6)(b—a)? NP [0 () — fmD(@))2 2
- ( 9(4n2 — 1)(n!)2227 ) ('f Iz - b—a )

1(b—a)"tz [2n3 —11n% + 180 —6 -
T 3 ompl An? — 1 o(f).

We now suppose that (24) holds with a constant C' > 0 as

[nfl

]
2 (k= 1)(b— a)2kt1 9 a+b
~falt)+ 3 (3(21@)451)!22)“ I k)( 5 )

k=2

IN

[251]
(k-1 (b—a)*t L (a+b
/f I ~Salh) + 2 ks T k)( 2 )
< Cb—a)"TE/o(fm). (25)

We may find a function f : [a,b] — R such that f(*~1 is absolutely continuous on

[a, b] as
ESN G USICED ath
f(nfl)(x) — { (n+1)! ifz e [CL, %] )

z—b)" ! a)(x . a
((ni)r)l)! + L= Zs(m U ifae (42,0
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It follows that

z—a)" —a)(z—a)"" " . a
f(")(:c) _ ( n!) =& 6)(5171))! B ifze [a, %b] ; (26)
U+ e e (45200].

By (20)-(23) and (26), it is not difficult to find that the left-hand side of the inequality
(25) becomes

(2n® — 11n? +18n — 6)(b — a)?"*?

L.H.5.(25) = 27
(25) 9(4n? — 1)(n!)222n ’ 27)
and the right-hand side of the inequality (25) is
11 2n3 —11n?2 4+ 18n—6 a1
R.H.5.(25) = 3 Z"n!\/ 1 C(b—a) . (28)

From (25), (27) and (28), we find that C' > %51 ,/%, proving that

the constant %5 % is the best possible in (24).

REMARK 2. It is clear that Theorem 1 and Theorem 4 can be regarded as special
cases of Theorem 5.

THEOREM 6. Let f : [a,b] — R be such that f(»~1) is absolutely continuous on
[a,b] and ") € Ly[a, b] where n is an even integer. Then we have

[(251]
N (k=1)(b—a)® o
3(2k + 1)122F 1

a+b

(=

)

b b—a
[ fayde = sl +

k=2

(n - 2)(b _ a)n n—1 n—1
W[f( )(b) - f( )(Q)]

1(b—a)"+%\/2n5—11n4+14n3+4n2+2n—2
< = \ o (fm). 29
= 3on(n+ 1) An? —1 o(f) (29)

+

1 1 2n5—11n4+4+14n3+4n242n—2
2™ (n+1)!

Inequality (29) is sharp in the sense that the constant 3 71

cannot be replaced by a smaller one.
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PROOF. From (20), (22), (23) and (2),we can easily get

b b—a T (k- )b 0 g (atb
/a f(@)dr — == flalb) + > 3(2k + 1)122+—1 e (T)

k=2
(n B 2)(b B a)n n—1 n—1
+w[f( () — f"(a)]

= /b S () f™) (2) da — ﬁ /b Sy (z) dx /ab ) (z) dz

/ / OIS (@) — 1 (1)] da dt

b—a

b_a {// d:cdt} {//f<"> f(")(t)]Qd:cdt}%
_ {/abSZ(x)d:c—bia[/abSn(x)d:c]Q}E
x{/ab[ﬂm(x)] ot [ sy 1}

B (2n° — 11n* 4 140> + 4n? + 2n — 2)(b — a)?" ! 3
B { 9(4n — 1)[(n + 1)1]222" }
1
" {|f(")|§ B [f(nfl)(b) _ f("*l)(a)]Q }5
b—a
L(b—a)ts \/2n5 — 11n* + 14n3 + 4n® +2n — 2
32%(n+ 1)! An2 — 1

IN

1
2

o(f™).

We now suppose that (29) holds with a constant C' > 0 as

/f

(n—-2)(b—-a)"
+ 3(n+1)!2n

)2k+1 (2h) a+b
; 2k+1 R 2

[F" D) = V(@)

< O —a)™E\Jo(f). (30)

We may find a function f : [a,b] — R such that f(*~1 is absolutely continuous on
[a, b] as

z—a)" ! —a)(z—a)” n— —a)" 1t . a
f<"1>()—{ o — s+ e ifa € o, 241,

L 3(n+1)!2"+i1
x—b)" b—a)(xz—b)" n—2)(b—a)" . a
((n+)1)! + 4 )6(n| o (3(7121(1)!23“ if o € (932, 0].
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It follows that

(x—a)™ (b—a)(z—a)" " ? . atbh
f(n)(x)_{ e, deela (31)
(=) 4 72)(556:1))! ifx e (‘”b b] }

n!

By (20)-(23) and (31), it is not difficult to find that the left-hand side of the inequality
(30) becomes

(2n° — 11n* 4 14n3 + 4n? 4 2n — 2)(b — a)?"*!

L.H.5.(30) = 32
(30) 9(4n? — 1)[(n + 1)N)222n ’ (32)
and the right-hand side of the inequality (30) is
1 1 2n5 — 11nt + 14n3 +4n2 + 2n — 2
R.H.5.(30) = = C(b—a)*™*. (33
(30) 32”(n+1)!\/ An2 — 1 (b—a) (33)

From (30), (32) and (33), we find that C > %2n(711+1)!\/2n5—11n4+41:ll;lj~1|>4n2+2n72,

1 1 2n5—11n4+4+14n34+4n242n—2
327 (n+1)! 4n?2—1

proving that the constant is the best possible in
(29).

REMARK 3. 1t is clear that Theorem 3 can be regarded as a special case of
Theorem 6.

REMARK 4. If we take n = 4 in Theorem 6, we get a sharp perturbed Simpson

type inequality as
1 11 9
< — —a)z ).
< [0 - 0o @)

(34)
Also, it should be noticed that inequality (34) has been appeared in [3] without a proof
of its sharpness but with a misprint.

[ rwa = s+ S o - 0wy

4 Applications in Numerical Integration

We restrict further considerations to the applications of Theorem 3 and Theorem 4.
THEOREM 7. Let 7 = {zg = a < z1 < --- < &, = b} be a given subdivision of the

interval [a, b] such that h; = z;41 —x; = h = bfT“ and let the assumptions of Theorem

3 hold. Then we have

_b-af

< 5vmem Vo) (35)

x)dx — = Zf (zi|Tit1)

PROOF. From (4) in Theorem 3 we obtain

ofo

{/:+ [f" (1)) dt — %[f/(xm) _ f/(xi)]z}% '

Tit1 h
[ f0de - oo <

124/30
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By summing (36) over i from 0 to n — 1 and using the generalized triangle inequality,
we get

B3 {/ T dt—%[f’(xwﬂ‘f/(“)ﬁ}z'

h —
/f dt EZ $1|$1+1
=0

12\/_
(37)
By using the Cauchy inequality twice, it is not difficult to obtain
Z { [ or a3l o) - £er)
b n n—1 %
< ﬁ{ JREOR D S —f’(xi)]Q}
a =0
< \/ﬁ{lf”lé - —[f/(b)b__f/(w } : (38)

Consequently, the inequality (35) follows from (37) and (38).

THEOREM 8. Let 7 = {zg = a < z1 < --- < , = b} be a given subdivision of the
interval [a, b] such that h; = z;41 —x; = h = b;—a and let the assumptions of Theorem
4 hold. Then we have

o= faifen)| < L2905 mm (39)
6 <Y = 48y/105n3 '

PROOF. From (12) in Theorem 4 we obtain

1
2

48\/W {/ TR - 1 i) - f”(W}
(40)

By summing (40) over i from 0 to n — 1 and using the generalized triangle inequality,
we get

[ s - gl <

i

b h n—1
JRCLES YT

48\/%17 {/ I“ f ) dt — %[f(xﬁl) - f”(xi)]Q}% : (41)
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By using the Cauchy inequality twice, it is not difficult to obtain

=i

1
2

[ 41 - e}

i=0 %
b n n—1 %
< Vi { [l or a3 S ) - f”(xm?}
a =0
< \/ﬁ{lf”’li— [f”(b)b—_J:’(a)] }_ (42)

Consequently, the inequality (39) follows from (41) and (42).
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