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Abstract

The incubation period is defined as the time from exposure to onset of disease,

i.e., it corresponds to the time from infection with a microorganism to symptom

development. In this paper a mathematical model is proposed with three classes of

population namely, susceptible, incubated and infected. The stability behavior of

the trivial, disease free and endemic equilibrium states are studied and we observe

that the instability of disease free state leads to the existence of the endemic state.

The possibility of Hopf-bifurcation of the endemic equilibria is studied using the

transfer rate from susceptible to incubated population as bifurcation parameter.

Finally, a threshold value of bifurcation parameter is determined numerically.

1 Introduction

The mathematical study of epidemics has come up with an astonishing number of
models with explanations for the spread and cause of epidemic outbreaks [1-9, 12]. The
landmark book [6] has fascinating stories of the relation between diseases and people.
It is a well established fact that the order of magnitude of deaths due to socioeconomic
disease is more than anything else in the world. In recent years several studies have
come up, which have not only explained various diseases due to socioeconomic aspects
but gained triumphs for developing medicine [10, 11].

The appearance of new diseases and resurgence of old ones make the case for in-
terdisciplinary involvement more pressing. Modelling the disease infections is gaining
great interest in the study of epidemiology. The main object of modelling is to an-
swer the role of infectious disease in regulating natural populations, i.e., decreasing
their sizes and either reducing their natural fluctuations or causing destabilization of
equilibrium positions into oscillations of the population states. In epidemiology, the
population can be classified into two broad classes, viz., susceptible and infected class.
The susceptible population is prone to infection and the infected population can trans-
mit the infection to the susceptible one. In the S-I-S Models the total population size at
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any instant is N = S+I, where S is susceptible population and I is infected population
at that instant.

As the simple S − I − S model suggests, the population from the susceptible class
joins or transfers to the infected class continuously. But in practice this process is not
regular, in fact, it is in the case of any viral disease and many other disease. The
susceptible individual stays for some definite period after leaving the susceptible class
and joining the infected class, this intermediate period may be termed as incubation
period. The incubation period is defined as the time from exposure to onset of disease
and when limited to infectious disease, corresponds to the time from infection with a
microorganism to symptom development [8].

During the incubation period of acute infections disease, which is subsequently fol-
lowed by a symptomatic period, it should be noted that infected host can be infections.
The incubation period of infectious disease offers various insights into clinical and pub-
lic health practices, as well as it is important for epidemiological and ecological studies
[8]. The incubation period is useful not only for making rough guesses so as to de-
termine the causes and sources of infection of individual cases [1, 2, 6], but also for
developing treatment strategies to extend the incubation period, for performing early
projection of disease prognosis and when the incubation period is clearly associated
with clinical severity due to dose response mechanism [2, 4, 5, 8].

Keeping in view of the above, in this paper we will study the role of the incubation
period in a disease model by assuming as an intermediate class, namely the incubated
population class between the susceptible and infected population classes. The orga-
nization of the paper is as follows. Section 2, describes a “susceptible → incubation
→ infection → susceptible” mathematical model. In section 3, we have studied the
boundedness of the system. Finally, in section 4, the dynamical behavior (i.e., stability
and Hopf-bifurcation) of the model studied both analytically and numerically.

2 The Mathematical Model

We consider the population density at any time t of the susceptible and infected (or
diseased) population are S(t) and D(t) respectively. We also assume that there is
no vertical transmission of the disease and the susceptible population is logistically
growing with intrinsic growth rate r and carrying capacity K. Let b is the disease
contact rate and δ is the rate of removal population from disease class and out of which
γ fraction of infected population will rejoin in susceptible class. Then the dynamics of
the “susceptible-infected” population is governed by following:

dS

dt
= rS

(

1 −
S

K

)

− bSD + γD (1)

dD

dt
= bSD − δD (2)

In our present study, we have considered that susceptible population instead of joining
infected class directly, will now go through an intermediate class termed as incubated
class. Keeping in view that the incubation period is defined as the time from exposure
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to onset of disease, let us assume that the population density in that class is I(t)
at any instant of time t. Let α be the disease contact rate. γ1 is the fraction of
the diseased population recovery from disease that will again join to the susceptible
class and β1 is the fraction of incubated class population that will go to the diseased
class. Again, let δ and β be the total removable population from diseased class and
incubated class, which include death due to disease and natural death of incubated
population respectively. Keeping in view of these assumptions, our population dynamic,
i.e., “susceptible-incubated-infected-susceptible” is governed by the following set of
differential equations:

dS

dt
= rS

(

1 −
S

K

)

− αSD + γ1D (3)

dI

dt
= αSD − βI (4)

dD

dt
= β1I − δD (5)

where initial population, i.e., S(0) > 0, I(0) > 0 and D(0) > 0 and total population at
any instant t is N(t) = S(t) + I(t) + D(t).

Now, in the above system (3)-(5), use the following:

x =
S

K
; y =

I

K
; z =

D

K
; τ = rt,

to get the following re-scaled system:

dx

dτ
= x(1 − x) − axz + cz (6)

dy

dτ
= axz − dy (7)

dz

dτ
= d1y − ez (8)

where

a =
αK

r
; c =

γ1

r
; d =

β

r
; d1 =

β1

r
; e =

δ

r

and x(0) > 0, y(0) > 0 and z(0) > 0.
In the next section, we will study the existence of all possible steady states of the

system and the boundedness of the solutions.

3 Existence of Equilibrium Points and Boundedness

There are three biologically feasible equilibria for the system (6)-(8), namely, (i) E0 =
(0, 0, 0) is the trivial steady state; (ii) E1 = (1, 0, 0) is the disease free steady state and
(iii) E∗ = (x∗, y∗, z∗) is endemic equilibrium state, where

x∗ =
de

d1a
; y∗ =

de2(d1a − de)

d2
1a

2(de − d1c)
and z∗ =

de(d1a − de)

d1a2(de − d1c)
.
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Further, it is clear form the above expression that E∗ ∈ R3
+, if a > de

d1

> c. Now we

will show that all the solutions of the system (6)-(8) are bounded in a region B ⊂ R3
+.

We consider the following function

w(τ ) = x(τ ) + y(τ ) + z(τ ) (9)

Then differentiating (6) with respect to τ and substituting the values from (6)-(8), we
get

dw

dτ
= x(1 − x) − (d − d1)y − (e − c)z

If we choose a positive real number η = min{d − d1, e − c}, then

dw(τ )

dτ
+ ηw(τ ) ≤ x(1 + η) − x2 = f(x)

Again f(x) is maximum at x = (1 + η)/2 and hence f(x) ≤ M := (1 + η)2/4. Hence

ẇ(τ ) + ηw(τ ) ≤ M.

Now, using comparison theorem, as τ → ∞, then

sup w(τ ) ≤
M

η

Therefore,

0 ≤ x(τ ) + y(τ ) + z(τ ) ≤
M

η

and let us consider the set B = {(x, y, z) ∈ R3
+ : 0 ≤ x(τ )+ y(τ )+ z(τ ) ≤ M/η}, hence

we can state the following lemma:

LEMMA 1. The system (6)-(8) is uniformly bounded in the region B ⊂ R3
+.

4 Dynamical Behavior of the System

We have already established that the system (6)-(8) has three equilibrium points,
namely, E0 = (0, 0, 0), E1 = (1, 0, 0) and E∗ = (x∗, y∗, z∗) in the previous section.
Again, the general variational matrix corresponding to the system is given by

J =





1 − 2x− az 0 −ax + c
az −d ax
0 d1 −e





Now, corresponding to the trivial steady state E0 = (0, 0, 0) the Jacobian J has the
following eigenvalues λi = 1, −d, −e; hence E0 is repulsive in x-direction and attracting
in y − z plane. Clinically it means when there is no susceptible population then there
will be no mass in incubated and in infected class. Hence, E0 is a saddle point.

Again, corresponding to the disease free equilibrium point E1 = (1, 0, 0), the fol-
lowing eigenvalues λ1 = −1 and λ2,3 are the roots of the following quadratic equation:

λ2 + (d + e)λ + (de − ad1) = 0
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when de > d1a, then the both the roots having negative real part and thus E1(1, 0, 0)
is a locally stable in this case.

Further, from the existence of E∗ and the stability condition of E1, it is clear
that the instability of the disease free equilibrium will lead to the existence of the
endemic equilibrium. Now, we will examine the local behavior of the flow of the system
around the endemic equilibria E∗. The characteristic equation corresponding to the
equilibrium is

P (λ) = λ3 + A1λ
2 + A2λ + A3 = 0 (10)

where
A1 = 2x∗ + az∗ + d + e − 1
A2 = (d + e)(2x∗ + az∗ − 1)
A3 = d1az∗(ax∗ − c)

on substitution the values of x∗ and z∗, it can be easily verified that Ai > 0, for
i = 1, 2, 3. Now, from the Routh-Hurwitz criterion, a set of necessary and sufficient
conditions for all the roots of the equation (10) having negative real part are Ai >
0, i = 1, 2, 3 and A1A2 > A3. Again, solving the last inequality, we get a sufficient
condition for stability which is given by d1c(d + e) > 1. Hence, we can state the
following theorem:

THEOREM 1. The system (6)-(8) is locally stable around the endemic equilibrium
point E∗, when d1c(d + e) > 1.

Further, we will study the Hopf-bifurcation of above system, taking “a” (i.e., the
rate of transfer from susceptible to incubated population) as the bifurcation parameter.
Now, the necessary and sufficient condition for the existence of the Hopf-bifurcation, if
there exists a = a0 such that (i) Ai(a0) > 0, i = 1, 2, 3, (ii) A1(a0)A2(a0)−A3(a0) = 0
and (iii) if we consider the eigen values of the characteristic equation (10) of the form
λi = ui + ivi, then Re d

da
(ui) 6= 0, i = 1, 2, 3. After substitution of the values, the

condition A1A2 − A3 = 0 becomes

1

a2
B1 +

1

a
B2 + B3 = 0 (11)

where

B1 = (d + e)
[

2de
d1

− d2e2

d1(de−d1c)

]2

B2 = (d + e)
[

2de
d1

− d
2
e
2

d1(de−d1c)

] [

2de
de−d1c

+ d + e − 2
]

+ d
2
e
2

de−d1c

(

de
d1

− c
)

B3 = (d + e)
[

de
de−d1c

− 1
] [

de
de−d1c

+ d + e − 1
]

− ded1

de−d1c

(

de
d1

− c
)

For example, taking a particular set of parameters: c = 0.01, d = 0.11, d1 = 0.1 and
e = 0.08, we get a positive root a = 7.09264 of the quadratic equation (11). Therefore,
the eigen values of the characteristic equation (10) at a = 7.09264 are of the form
λ1,2 = ±iv and λ3 = −w, where v and w are positive real number.

Now, we will verify the condition (iii) of Hopf-bifurcation. Put λ = u + iv in (10),
we get

(u + iv)3 + A1(u + iv)2 + A2(u + iv) + A3 = 0 (12)
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Figure 1: The phase portrait of three species around the endemic equilibrium, taking
c =0.01, d=0.11, d1=0.1, e=0.08 and a=5.1
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Figure 2: The phase plane representation of three species around the endemic equilib-
rium, taking c =0.01, d=0.11, d1=0.1, e=0.08 and a=7.15

On separating the real and imaginary part and eliminating v between real and imagi-
nary part, we get

8u3 + 8A1u
2 + 2(A2

1 + A2)u + A1A2 − A3 = 0 (13)

It is clear from the above that u(a0) = 0 iff A1(a0)A2(a0) − A3(a0) = 0. Further, at
a = a0, u(a0) is the only root, since the discriminant 8u2 + 8A1u + 2(A2

1 + A2) = 0 is
64A2

1 − 64(A2
1 + A2) < 0. Again, differentiating (13) with respect to a, we have

(

24u2 + 16A1u + 2(A2
1 + A2)

) du

da
+

(

8u2 + 4A1u
) dA1

da
+ 2u

dA2

da
+

d

da
(A1A2 −A3) = 0

Now, since at a = a0, u(a0) = 0, we get

[

du

da

]

a=a0

=
− d

da
(A1A2 − A3)

2(A2
1 + A2)

6= 0,
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Figure 3: The phase plane representation of three species around the endemic equilib-
rium, taking c =0.01, d=0.11, d1=0.1, e=0.08 and a=9.1

which will ensure that the above system has a Hopf-bifurcation.
Hence as the rate of transfer from susceptible to incubated population (or the rate

of interaction between disease and susceptible class), i.e., a, when crosses it’s threshold
value, i.e., a = a0, then susceptible, incubated and disease population start oscillating
around the endemic equilibrium. The above result is shown numerically in Figures 1-3.
In Figure 1, we observed that the endemic equilibrium is stable, when a < 7.09264,
but when we cross the threshold value of a = 7.09264, the above system is showing
Hopf-bifurcation, see Figures 2 and 3.
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