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Abstract

The aim of the present paper is to establish an existence result on common
fixed point of best approximation without using the starshapedness condition of
the domain. As a consequence, our result improves and extends the corresponding
results of Dhage [4] and Mukherjee and Som [10].

1 Introduction

Existence of fixed point has been used at many places in approximation theory. Sev-
eral results exist in the literature where fixed point theorems are used to prove the
existence of best approximation. Meinardus [9] was the first who employed a fixed
point theorem to establish the existence of an invariant approximation. Afterwards,
Brosowski [1] obtained a celebrated result and generalized the Meinardus’s result. Us-
ing another fixed-point theorem, Subrahmanyam [14] obtained generalization of the
result of Meinardus [9]. Further, Singh [12] observed that the linearity of mapping and
the convexity of the set of best approximations in the result of Brosowski [1], can be
relaxed. In a subsequent paper, Singh [13] also observed that only the nonexpansive-
ness of mapping on the set of best approximations is necessary for the validity of his
own earlier result in [12]. Later, Hicks and Humpheries [7] showed that the result of
Singh [12] remains true, if domain of mapping is replaced by the boundary of domain.
Furthermore, Sahab et al. [11] generalized the result of Hicks and Humpheries [7] and
Singh [12] by using a pair of commuting mappings, one linear and the other nonex-
pansive and established the existence of best approximation in a normed space.

Recently, Dhage [4] obtained an existence result similar to Theorem 3 of Sahab et
al. [11] concerning the existence of a best approximation from a subset to two points
of a normed linear space under weaker conditions.

Dotson [5] proved the existence of a fixed point for a nonexpansive mapping. He
further extended his result beyond the star-shaped domain in [6]. This idea was
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utilized by Mukherjee and Som [10] to prove existence of fixed point and then to apply
it for proving existence of invariant approximation. In this sense, they extended the
result of Singh [12] without the starshapedness condition.

The purpose of this paper is to show the validity of Theorem 3.2 of Dhage [4]
without using the starshapedness condition of domain in a normed linear space. As a
by-product, the result of Mukherjee and Som [10] is also extended.

2 Preliminaries

We recall some definitions.

DEFINITION 2.1. [4]. Let X be a normed linear space with norm ‖.‖ and let C be
a nonempty subset of X. Let x0 ∈ X. An element y ∈ C is called a best approximant
to x0 ∈ X, if

‖x0 − y‖ = d(x0, C) = inf{‖x0 − z‖ : z ∈ C}.

Let AC(x0) be the set of best C-approximants to x0 and so

AC(x0) = {y ∈ C : ‖x0 − y‖ = d(x0, C)}. (1)

Denote

A′
C(x0) = AC(x0) ∪ {x0}. (2)

DEFINITION 2.2. [4]. (i) A subset C of X is said to be convex, if λx+(1−λ)y ∈ C,
whenever x, y ∈ C and 0 ≤ λ ≤ 1. (ii) A subset C of X is said to be starshaped, if there
exists at least one point p ∈ C such that the line segment joining x to p is contained
in C for all x ∈ C, that is λx + (1− λ)p ∈ C, for all x ∈ C and 0 < λ < 1. In this case
p is called the star center of C.

Each convex set is starshaped with respect to each of its points, but not conversely.

DEFINITION 2.3. A pair of self-mappings (I, T ) of a normed linear space X is
said to be commutative on C, if ITx = TIx for all x ∈ C.

DEFINITION 2.4. [2]. A non-empty set X with a function ρ : X×X ×X → (0,∞)
is called a D-metric space with a D-metric ρ, denoted by (X, ρ) if ρ satisfies:

(i) ρ(x, y, z) = 0 ⇔ x = y = z (coincidence),

(ii) ρ(x, y, z) = ρ(p{x, y, z}) where p is a permutation of {x, y, z} (symmetry), and

(iii) ρ(x, y, z) ≤ ρ(x, y, a) + ρ(x, a, z) + ρ(a, y, z) for all x, y, z, a ∈ X (tetrahedral
inequality).

For details we refer to Dhage [4].

DEFINITION 2.5. [4]. (i) A sequence {xn} ⊂ X is called convergent to x ∈
X if limm,n ρ(xm, xn, x) = 0. (ii) A sequence {xn} ⊂ X is called D-Cauchy if
limm,n,p ρ(xm, xn, xp) = 0. (iii) A complete D-metric space is the one in which every
D-Cauchy sequence converges to a point in it.

It has been shown in [2] and [8, Lemma 2.9] that the D-metric ρ is a continuous
function on X × X × X in the topology of D-metric convergence which is Hausdorff.
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DEFINITION 2.5. [4]. A mapping f : (X, ρ) → (X, ρ) is said to D-contractive with
respect to a mapping g : (X, ρ) → (X, ρ), if

ρ(fx, fy, fz) < ρ(gx, gy, gz) (3)

for all x, y, z ∈ X for which ρ(gx, gy, gz) 6= 0, and D-nonexpansive with respect to g, if

ρ(fx, fy, fz) ≤ ρ(gx, gy, gz) (4)

for all x, y, z ∈ X.

DEFINITION 2.7. [4]. Two maps f, g : (X, ρ) → (X, ρ) are called coincident if
there is an x ∈ X such that fx = gx and limit coincident if there is a sequence {xn} in
X such that limn fxn = limn gxn. Similarly they are called limit commutative or limit
commuting if there is a sequence {xn} in X such that limn(fg)(xn) = limn(gf)(xn).
Two maps f, g : (X, ρ) → (X, ρ) are called limit coincidentally commuting if their limit
coincidence implies the limit commutingness on X, i.e., there exists a sequence {xn}
in X such that limn fxn = limn gxn implies limn(fg)(xn) = limn(gf)(xn). Similarly,
two maps f, g : (X, ρ) → (X, ρ) are called coincidentally commuting if they commute
at coincidence points. Finally, a mapping f : (X, ρ) → (X, ρ) is continuous if and only
if for any sequence {xn} in X, xn → x implies fxn → fx.

We remark that every commuting pair of maps on a D-metric space is limit coinci-
dentally commuting, but the converse may not be true. Similarly limit coincidentally
commutativity implies coincidentally commutativity, but the converse may not be true
(for detail, see [2]).

DEFINITION 2.8. [2]. For x0, y0 ∈ X, let us denote

D(x0, y0, C) = inf{ρ(x0, y0, c) : c ∈ C}. (5)

An element z ∈ C is said to be a best approximant to x0 and y0 from C (or closest
to x0 and y0 from C) if

ρ(x0, y0, z) = D(x0, y0, C).

In this case the element z is called a best C-approximant to x0 and y0 from C and the
set of all such best C-approximants to x0 and y0 from C is denoted by

AC(x0, y0) = {z ∈ C : ρ(x0, y0, z) = D(x0, y0, C)}. (6)

Denote

A′
C(x0, y0) = AC(x0, y0) ∪ {x0, y0}. (7)

It is remarked that the notion of a closest element to x0 and y0 from a subset C is
different from that of element to the set {x0, y0} from C (cf.[4]).

We give the definition of contractive jointly continuous family introduced by Dot-
son [6].

DEFINITION 2.9. [6]. Let F = {fα}α∈X be a family of functions from [0, 1] into
a normed linear space X such that fα(1) = α for each α ∈ X. The family F is said to
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be contractive, if there exists a function φ : (0, 1) → (0, 1) such that for all α, β ∈ X

and all t ∈ (0, 1) ,we have

‖fα(t) − fβ(t)‖ ≤ φ(t)‖α − β‖.

The family F is said to be jointly continuous(resp.jointly weakly continuous) if t → t0
in [0, 1] and α → α0 in X(resp. if t → t0 in [0, 1] and α →w α0 in X), then fα(t) →
fα0

(t0) (resp. fα(t) →w fα0
(t0)) in X; here → and →w denote the strong and weak

convergence, respectively.

REMARK 2.10. In the light of the comments by Dotson [6], if C ⊆ X is p−starshaped
and fα(t) = (1 − t)p + tα , (α ∈ C, t ∈ [0, 1]), then {fα}α∈C is a contractive jointly
continuous family with φ(t) = t. Thus the class of subsets of X with the property of
contractiveness and joint continuity contains the class of starshaped sets which is turn
contains the class of convex sets.

The following result is needed in the sequel.

THEOREM 2.11. [3] Let T and g be two continuous selfmappings of a compact
D-metric space X satisfying (3). Further, suppose that T (X) ⊆ g(X) and {T, g} are
coincidentally commuting. Then T and g have a unique common fixed point.

3 Main Result

To prove our result, we use the technique of Dhage [4].

THEOREM 3.1. Let C be a nonempty subset of a normed linear space X and
{x0, y0} ⊂ X. Let T, g : X → X be two mappings satisfying the following conditions:

(i) T is nonexpansive on ∆ = Ac(x0, y0) w.r.t. the map g,
(ii) T : ∂C → C, where ∂C is a boundary of C,
(iii) {T, g} : {x0, y0} → {x0, y0} are injective,
(iv) {T, g} are limit coincidentally commuting on ∆ and
(v) g is uniformly continuous on X.

Further, if ∆ is nonempty compact and has a contractive jointly continuous family F =
{fα}α∈∆, and g(∆) ⊆ ∆, then T and g have a common fixed point in C which is closet
to x0 and y0 w.r.t. a D-metric ρ on X defined by ρ(x, y, z) = ‖x−y‖+‖y−z‖+‖z−x‖.

PROOF. Define D-metric ρ on the normed linear space X as:

ρ(x, y, z) = ‖x− y‖ + ‖y − z‖ + ‖z − x‖ (8)

for x, y, z ∈ X. Since T is nonexpansive on X w.r.t. map g, we have

ρ(Tx, Ty, Tz) = ‖Tx − Ty‖ + ‖Ty − Tz‖ + ‖Tz − Tx‖

≤ ‖gx − gy‖ + ‖gy − gz‖ + ‖gz − gx‖

= ρ(gx, gy, gz)

for all x, y, z ∈ X which shows that T is also D-nonexpansive on X w.r.t. the map g.
Let y ∈ ∆. Then gy ∈ ∆, because g(∆) ⊆ ∆. It is remarked by Hicks and

Humpheries [7] that the element of best C-approximation need not belong to the
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interior of C, so y ∈ ∂C. Since T (∂C) ⊂ C, we have Ty ∈ C and from (6), it follows
that

ρ(Ty, x0 , y0) = ρ(Ty, Tx0, T y0)

≤ ρ(gy, gx0, gy0)

= ρ(gy, x0, y0)

= D(x0, y0, C)

and, therefore, Ty ∈ ∆.
Choose a sequence kn ∈ (0, 1) with {kn} → 1 as n → ∞. Define a sequence {Tm}

of mappings on ∆ by
Tmx = fTx(km)

for each m ∈ N. From hypothesis (i) it follows that T and consequently each Tm is
uniformly continuous on ∆. From the definition of contractive of F , each Tm is well
defined from ∆ into ∆ for each m ∈ N. Further, we show that {Tm, g} satisfy the
condition (3) and are limit coincidentally commuting on ∆ for sufficiently large values
of m.

First, we show that {Tm, g} satisfy condition (3) on ∆ for each m ∈ N. Since T is
nonexpansive on ∆ w.r.t. the map g, we have

ρ(Tmx, Tmy, Tmz) = ‖Tmx − Tmy‖ + ‖Tmy − Tmz‖ + ‖Tmz − Tmx‖

= ‖fTx(km) − fTy(km)‖ + ‖fTy(km) − fTz(km)‖

+‖fTz(km) − fTx(km)‖

≤ φ(km)‖Tx − Ty‖ + φ(km)‖Ty − Tz‖ + φ(km)‖Tz − Tx‖

≤ φ(km)‖gx − gy‖ + φ(km)‖gy − gz‖ + φ(km)‖gz − gx‖

≤ φ(km)[‖gx − gy‖ + ‖gy − gz‖ + ‖gz − gx‖]

= φ(km)ρ(gx, gy, gz)

< ρ(gx, gy, gz) (φ(km) < 1)

for all x, y, z ∈ ∆ for which ρ(gx, gy, gz) 6= φ (since ρ ∈ (0,∞)). Thus {Tm, g} satisfy
condition (3) on ∆ and hence are D-contractive on ∆.

Secondly, we show that {Tm, g} are limit coincidentally commuting on ∆ for suf-
ficiently large values of m. Assume that {Tm, g} are limit coincident on ∆ for large
values of m, that is, there is a sequence {xn} in ∆ such that

lim
n

Tmxn = lim
n

gxn for large values of m.

By the definition of Tm,

lim
n

(lim
m

Tmxn) = lim
n

(lim
m

fTxn
(km))

= lim
n

fTxn
(1) (by km → 1 and jointly continuity of ∆)

= lim
n

Txn

= lim
n

gxn (by limit coincidentally commutingness of T and g)
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i.e.
lim
n

(lim
m

Tmxn) = lim
n

gxn.

Now,

lim
m

Tm(gxn) = lim
m

fTgxn
(km)

= fTgxn
(1) (by km → 1 and jointly continuouity of ∆)

= Tgxn.

Therefore, by the uniform continuity of g,

lim
n

(lim
m

Tm(gxn)) = lim
n

Tgxn

= lim
n

gTxn

= g lim
n

Txn

= g(lim
n

(lim
m

Tmxn))

= lim
n

(g lim
m

Tmxn)

= lim
n

(lim
m

gTmxn)

or,
lim
n

(lim
m

Tm(gxn)) = lim
n

(lim
m

g(Tmxn))

which shows that Tm and g are limit coincidentally commuting on ∆ for sufficiently
large values of m.

Since the norm ‖.‖ and the D-metric ρ defined by (8) generate equivalent topologies
on X, therefore, the compactness of ∆ and the continuity of g w.r.t. the norm ‖.‖ imply
the compactness of ∆ and the continuity of g w.r.t. the D-metric ρ on X [2]. Now,
Theorem 2.11 guarantees that Tm and g have a unique common fixed point xn in ∆
for sufficiently large values of m, i.e., we have

xn = Tmxn = gxn

for sufficiently large values of m.
The compactness of ∆ implies that the sequence {xn} has a convergent subsequence,

say {xmi
} converging to a point z ∈ ∆.

By the definition of Tmi

xmi
= Tmi

xmi
= fTxmi

(kmi
). (9)

Since g is continuous, the D-nonexpansiveness of T w.r.t. g implies that T is also
continuous on ∆ w.r.t. the D-metric ρ on it. Therefore, we have from joint continuity
of F, as i → ∞ in (9)

z = lim
i

xmi
= lim

i
Tmi

xmi
= lim

i
fTxmi

(kmi
) = Tz.

Similarly,
gz = g(lim

i
xmi

) = lim
i

gxmi
= lim

i
xmi

= z.
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Hence z is a common fixed point of T and g in C which is closest to x0 and y0.
This completes the proof.

REMARK 3.2. Theorem 3.1 also remains true if we replace the D-metric ρ given
in (8) by

ρ(x, y, z) = max{‖x− y‖, ‖y − z‖, ‖y − z‖}. (10)

REMARK 3.3. In the light of Remark 2.10, our Theorem 3.1 generalizes Theorem
3.2 due to Dhage [4].

REMARK 3.4. When x0 = y0 and ρ(x, y, z) = max{d(x, y), d(y, z), d(z, x)}, where
d is an ordinary metric on the normed linear space X defined by d(x, y) = ‖x−y‖, our
Theorem 3.1 generalizes Theorem 2 of Mukherjee and Som [10] for a pair of maps.
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