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Abstract

We employ coincidence degree method to prove existence of T-periodic solu-
tions in D for extended Gierer-Meinhardt (EG-M) model, where D is a strictly
positively invariant region. Furthermore, Floquet theory is provided to analyze
uniqueness of a T-periodic solution xo(¢) in D and stability of xo(t) is presented.

1 Introduction
Gierer-Meinhardt model [6, p. 376-380] is of form:

uw=a(l-— bu+c“72)
0= d(u? — ev).

If we set the constants a, b, c,d and e to be positive continuous T-periodic functions
of t with period T' > 0, then the corresponding model is called the extended Gierer-

Meinhardt (EG-M) model.
We focus on the dynamics of periodic solutions of EG-M model. Let

u a — u C u2(t)
0= () o F(t,x@)_( 0L~ M)+ ()5 )

Then EG-M model is defined by

@(t) = F(t, x(t)) (1)
with conditions
1
a(t) >0, 1.8 <b(t) <2, 0.01 <c(t) <0.1, d(t) >0, 5 < e(t) < 1. (2)
LEMMA 1. There exists a strictly positively invariant region

1
<u<07, ngg1}
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28 Stability of Periodic Solutions

for EG-M model given by (1) with conditions (2).

PROOF. Clearly D is a closed convex subset of RZ. We only need to check whether
n(u,v) - F(t, (u,v)) < 0 along the boundaries of D, where n(u,v) is the unit normal
vector field along the boundary of D and F'(¢, (u,v)) is defined in (1). Notice that for
any (u,v) € D,

<u <0.7,

IN

v <1. (3)

N~
=

Let I; = {(u,v) € R? : w= 1}, for any (u,v) € [y N D, n(u,v) = (—1,0) and

F(t, (u,v)) = (a(t)(1 — b(t)u(t) + c(t)

1
n(u,v) - F(t, (u,v)) = —a(t)(1 — %b(t) +c(t)—2-) < 0.
Let Iy = {(u,v) € R? : w = 0.7}, for any (u,v) € 2NID, n(u,v) = (1,0). It follows
from (2) and (3) that

0.49
u(t)

Let I3 = {(u,v) € R? : v = 1}, for any (u,v) € I3NID, n(u,v) = (0,—1). From
(2) and (3), we get

n(u,v) - F(t, (u,v)) = a()(1 — 0.7b(t) + c(¢) ) <0.

n(u,v) - F(t, (u,v)) = —d(t)(u?(t) — —e(t)) < 0.

Let Iy = {(u,v) € R? : v = 1}, for any (u,v) € l4 N ID, n(u,v) = (0,1). It follows
from (2) and (3),

n(u,v) - F(t, (u,v)) = d(t)(u?(t) — e(t)) < 0.
Since n(u,v) - F(t, (u,v)) < 0 for all (u,v) € 9D, D is a strictly positively invariant
region.

Linearize the system (1) with respect to its a T-periodic solution z(t) = (u(t), v(t))T €
D for any t € R (if such a T-periodic solution exists), then we get

W(t) = AW (1), "
where
A(t) = Fjy = —a(t)b(t) + 240D a0 )

PROPOSITION 2. Linear system (4) satisfies ¢r(A(t)) < 0 and det(A(t)) > 0 for
any t € R.
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PROOF. By (2) and (3),

tr(A()) = —a(t)b(t) + ZQ(tLC(%)”(t) —d(t)e(t) < 0
Furthermore,
St A(D) — alO(e(t) — 2a(t)c(t)vd((tt))e(t)u(t) . 2a(t)c(vt2?t(t)u3 (t)
> a(t)d() (b(t)e(t) - 20(t>5((;)“(t>> )

Now, let us state the main result:

THEOREM 3. For EG-M model with conditions (2), there exists only one T-
periodic solution zo(t) in D, and z(t) is locally uniformly asymptotically stable.

2 Preliminary
Consider the nonlinear system
(t) = V(t,z(t), z(to) = zo, z(t) € R (5)

LEMMA 4. If z*(t) is an exponentially stable solution of (5), then it is also a
uniformly asymptotically stable solution of (5).

For proof, see [3, p. 178-179].

Let X = {z € C([0,T])|z(0) = z(T)}. Clearly X is a Banach space with the
supremum norm. Define Lz (t) = @(t) with domain

Dom(L) = {z € C*([0,T]) | 2(0) = =(T)}.

It is easy to verify that Dom(L) is contained in X, the range of L is Im(L) = {z(t) €
X | fOT z(t)dt = 0} and L is a Fredholm mapping of index 0. Let

O = {x € Dom(L)|z(t) € D, Vte[0,T]}. (6)

Define F1 : © — X by Fi(x) = F(-,z(-)) and Hy(z)(t) = Fi(x)(t) — La(t).
Now, construct a homotopy family
Hy:(Dom(L)N®O) x [0,1] = X
to be of the form
Hx(2)(t) = Fa(2)(t) — La(t), (7)
where Fy : © x [0,1] — X with
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Here b(t) = 1.9(1—\)+Ab(t), &(t) = 0.05(1—A)+Ac(t) and &(t) = 0.8(1—\)+Ae(t)

with A € [0,1]. Tt is easy to verify that Fy : © x [0,1] — X is L-compact. For more
details of degree theory, see [5, Ch. I-IV].

LEMMA 5. Given A € [0, 1], if zA(t) € © is a T-periodic solution of the system

@(t) = Fa(z)(d), 9)

then 0D is an a priori bound of xx(t).

PROOF. Clearly, b(t), é&(t) and &(t) satisfy conditions (2). System (9) is an EG-M
model. By Lemma 1, D is still a strictly positively invariant region of system (9). None
of T-periodic solutions of (9) in © can touch the boundary of D.

COROLLARY 6. 0 £H((Dom(L) N aD) x [0,1]).

LEMMA 7. Dp(Ho(z)(t),0) = Dp(Ho(x)(t),D) = 1, where Dy denote Leray-
Schauder degree and Dp denote Brouwer degree.

PROOF. For the system Ho(z)(t) = 0, there is only one steady-state

~ (104 [(1.04\? 1
P=\19°\19) 038
in the strictly positively invariant region D, which is a trivial T-periodic solution.
Since Hy(z)(t) = 0 is an autonomous system, Proposition 2 and Bendixson’s Criteria
guarantee that p is only one T-periodic solution in D.

For the system Hy(x)(t) = 0, Leray-Schauder degree of Hy in D is in fact reduced
into Brouwer degree. Therefore, by Proposition 2,

DL(Ho(z)(t), ©) = Dp(Ho(x)(t), D) = Dp(Fo(z)(t), D) = sign(det A1(t)) = 1,

0.lau(t) 0.05au?(t)
s = Mt e ).
2du(t) —0.8d

where

For more details, see the similar proof in [4].
LEMMA 8. For system (4) with conditions (2), zero is the only T-periodic solution.

PROOF. Suppose (4) has a non-trivial T-periodic solution called W (t). By Propo-
sition 2 and Floquet theory [2, p. 93-105], its orbit I" is an orbitally asymptotically
stable. For s € R, sWi(t) is also a T-periodic solution of (4). Then orbit of sW;(t)
can not be attracted to I' for any s € R. This leads a contradiction to the orbital
asymptotic stability of I'.

REMARK 9. For the linear system (4), if tr(A(t)) does not change sign in some
simply connected region E C R?, then (4) has no non-trivial periodic solution in
E; since the system (4) is a linearization of an non-autonomous system, Bendixson’s
Criteria can not be used to prove Lemma 8.

LEMMA 10. Suppose F : X — X is a completely continuous map of a Banach
space such that F(0) = 0 and F is Frechet differentiable at 0 with Frechet derivative
T € K(X), where K(X) is a set of all compact operators defined on X. If I =T € L(X)
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is regular (invertible), then there exists n > 0 such that, for B = {x € X : ||z]o0 < 0},
we have

D(F —1,B) = D(T — I, B).

For proof, see [1, Ch. 14].

Assume system (4) is the linearization of system (1) with respect to zo(t), by
Theorem 2.10 of [2, p.97], system (4) can be transformed into an autonomous system

Z(t) = RZ(t), (10)

where R is called a Monodromy matrix of A(t).

LEMMA 11. Let A(t) and W (t) be defined in (4), LW (t) = W (t); B(xo(t),e) C ©
denote a small neighborhood of z¢(t), B(0,€) C ©\{zo(t)} denote a small neighborhood
of 0. Set

QW (1), )) = (AR + (1 — N A(£))W (1) — LW (1),
then
Dg(Q(-, 1), B(0,¢) NR?) = 1.

1 2mi
PROOF. Clearly, tr(R) = p1 + p2 = T fOT tr(A(s))ds(mod%) < 0, where p; and
po are eigenvalues of R. By Proposition 2, for any A € [0, 1],

tr(AR + (1 — MA(1) = Mr(R) + (1 — Ntr(A(t)) < 0,

and Remark 9 implies that Q(W (t), A\) = 0 has only one trivial T-periodic solution in
B(0,¢€). By degree invariance with respect to homotopy family,

DL(Q(') O)a B(Oa 6)) = DL(Q(') 1)a B(Oa 6)) = DB(Q(') 1)a B(Oa 6) n R2)'

Consider the Taylor expansion of Hy(z)(t) at xo(t) € B(zo(t), €), where Hy(z)(t) is
defined in (7) as A = 1. Then we have

Hy(2)(t) = Hi(xo)(t) + M(t)(z(t) — 20(t)) + h(t, 2(t) — o(t)),

where M = F] — L is (H1),, and h(t, z(t) — zo(t)) is a function of o(||z(t) — zo(t)||c0)-
Since zo(t) is the unique solution of Hi(x)(t) = 0 in D, by excision property of the
degree, D (Hy(z)(t),0) = Dr(H1(x)(t), B(zo(t),€)) and by Lemma 10,

Dy (Hy(x)(t), B(zo(t), €)) = Dr(M(t)(z(t) — zo(t)), B(zo(t), €)).
Let W (t) = z(t) — zo(t), then by Lemma 7,

Dy (Ho(z)(t),©) = DL (H1(x)(t), ©)
= D (M)W (t), B(0, )) Dr(Q(-,0), B(0,¢))
:DL(Q('al)aB(an)) (Q(-,l),B(O,E)ﬂR2):1.
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3 Proof of Theorem 3

PROOF. (Existence) Combine Lemma 5, Corollary 6 and Lemma 7, by a general
existence theorem of the Leray-Schauder type, we get

DL (Hy(z)(t), ©) = Dr(Ho(x)(t),©) = Dp(Fo(z)(t), D) = 1,
which implies that there at least exists one T-periodic solution zg(t) = (ug(t), vo(t))T
of EG-M model in D. If a,b,c,d and e are constants, it is easy to show that there is
only one trivial T-periodic solution xg € int(D), otherwise, we can easily verify that
xo(t) is a nontrivial T-periodic solution of EG-M model in D by substituting xo(t) into
EG-M model.

(Uniqueness) Define Cp = {z(t) € O|z(t) satisfies (1) with conditions (2)}. Since
2o(t) € Cr, Cr is not an empty set. If a,b, ¢, d and e are constants, there is only one
constant solution in Cr.

If one of a(t), b(t), c(t), d(t) and e(t) is a non-trivial T-periodic function, then zq(t) €
Cr is a non-trivial T-periodic solution. Assume C7 is not a singleton; we pick

_ w(®) _ [ ua2(t)
n=( iy ) =0=(12 )
in Cp and substitute them into (1) to get

i(t) = F(t,z:(t)), i=1,2. (11)

Define z(t) = z1(t) — z2(t). By the mean value theorem, we get

2(t) = z(t)/o Fg; [t, z2(t) + 0(x1 (L) — 22(t))]d0, (12)
and
1, . —( =a(®)b(t) + 2a(t)c(t)m(t) —a(t)c(t)n(t)
/0 F [t a(t) + 0(21(t) — 22(t))]d0 = ( 2u(t)d(t) —d(t)e(t) ) ’
where (1) + O(us (£) — us(t)
- 1u2t+9u1t—u2t
W“‘Avmwwm@—wwﬁa
Y fualt) + B () — us(t))]?
”@‘A [o2(0) & 6(on () —oa(D))? ™
By (3)

From (2), it follows

tr (/ Fo[t, zo(t) + 0z (£) — xg(t))]dt?) = —d(t)e(t) — a(t)b(t) + 2a(t)c(t)m(t) < 0.
0
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This implies that the zero solution is the only one T-periodic solution for (12) by
Remark 9. Hence, z1(t) = x2(t). Cr is a singleton.

(Stability) If a(t), b(¢), c(t), d(t) and e(t) are constant functions, then zo € D is a
constant solution of system (1). By Proposition 2, x¢ is a locally uniformly asymptot-
ically stable solution.

If one of a(t),b(t), c(t),d(t) and e(t) is a non-trivial T-periodic function, zo(t) is a
non-trivial T-periodic solution of system (1). By Proposition 2, one Floquet exponent
p1 has negative real part. If Real(p2) < 0, xo(t) is locally uniformly asymptotically
stable by Theorem 2.13 of [2, p.101] and Lemma 4.

To show that Real(ps) < 0 always holds by treating these two cases: (1) pq is
a complex number. Notice that p; and ps are conjugate eigenvalues of R. Thus
Real(p2) < 0; (2) p2 is a real number. Clearly p; is also a real number and p; < 0
implies that pe # 0 (otherwise, it is a contradicts Lemma 8. If p > 0, then det(R) < 0,
sign(det(R)) = —1 = Dp(Q(-, 1), B(0,¢) N R?), which contradicts Lemma 11.
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