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Abstract

We employ coincidence degree method to prove existence of T -periodic solu-
tions in D for extended Gierer-Meinhardt (EG-M) model, where D is a strictly
positively invariant region. Furthermore, Floquet theory is provided to analyze
uniqueness of a T -periodic solution x0(t) in D and stability of x0(t) is presented.

1 Introduction

Gierer-Meinhardt model [6, p. 376-380] is of form:

{
u̇ = a(1 − bu + cu

2

v
)

v̇ = d(u2 − ev).

If we set the constants a, b, c, d and e to be positive continuous T -periodic functions
of t with period T > 0, then the corresponding model is called the extended Gierer-
Meinhardt (EG-M) model.

We focus on the dynamics of periodic solutions of EG-M model. Let

x(t) =

(
u(t)
v(t)

)
and F (t, x(t)) =

(
a(t)(1 − b(t)u(t) + c(t)

u
2(t)

v(t) )

d(t)(u2(t) − e(t)v(t))

)
.

Then EG-M model is defined by

ẋ(t) = F (t, x(t)) (1)

with conditions

a(t) > 0, 1.8 < b(t) < 2, 0.01 < c(t) < 0.1, d(t) > 0,
1

2
< e(t) < 1. (2)

LEMMA 1. There exists a strictly positively invariant region

D =

{
(u, v) ∈ R

2 :
1

2
≤ u ≤ 0.7,

1

4
≤ v ≤ 1

}
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for EG-M model given by (1) with conditions (2).

PROOF. Clearly D is a closed convex subset of R
2. We only need to check whether

n(u, v) · F (t, (u, v)) < 0 along the boundaries of D, where n(u, v) is the unit normal
vector field along the boundary of D and F (t, (u, v)) is defined in (1). Notice that for
any (u, v) ∈ D,

1

2
≤ u ≤ 0.7,

1

4
≤ v ≤ 1. (3)

Let l1 = {(u, v) ∈ R
2 : u = 1

2}, for any (u, v) ∈ l1 ∩ ∂D, n(u, v) = (−1, 0) and

F (t, (u, v)) = (a(t)(1 − b(t)u(t) + c(t)
u2(t)

v(t)
), d(t)(u2(t) − e(t)v(t))),

by (2) and (3),

n(u, v) · F (t, (u, v)) = −a(t)(1 −
1

2
b(t) + c(t)

1
4

v(t)
) < 0.

Let l2 = {(u, v) ∈ R
2 : u = 0.7}, for any (u, v) ∈ l2∩∂D, n(u, v) = (1, 0). It follows

from (2) and (3) that

n(u, v) · F (t, (u, v)) = a(t)(1 − 0.7b(t) + c(t)
0.49

v(t)
) < 0.

Let l3 = {(u, v) ∈ R
2 : v = 1

4}, for any (u, v) ∈ l3 ∩ ∂D, n(u, v) = (0,−1). From
(2) and (3), we get

n(u, v) · F (t, (u, v)) = −d(t)(u2(t) −
1

4
e(t)) < 0.

Let l4 = {(u, v) ∈ R
2 : v = 1}, for any (u, v) ∈ l4 ∩ ∂D, n(u, v) = (0, 1). It follows

from (2) and (3),

n(u, v) · F (t, (u, v)) = d(t)(u2(t) − e(t)) < 0.

Since n(u, v) ·F (t, (u, v)) < 0 for all (u, v) ∈ ∂D, D is a strictly positively invariant
region.

Linearize the system (1) with respect to its a T -periodic solution x(t) = (u(t), v(t))T ∈
D for any t ∈ R (if such a T -periodic solution exists), then we get

Ẇ (t) = A(t)W (t), (4)

where

A(t) = F ′

x(t) =

(
−a(t)b(t) + 2a(t)c(t)u(t)

v(t) −a(t)c(t)u2(t)
v2(t)

2d(t)u(t) −d(t)e(t)

)
.

PROPOSITION 2. Linear system (4) satisfies tr(A(t)) < 0 and det(A(t)) > 0 for
any t ∈ R.
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PROOF. By (2) and (3),

tr(A(t)) = −a(t)b(t) +
2a(t)c(t)u(t)

v(t)
− d(t)e(t) < 0.

Furthermore,

det(A(t)) = a(t)b(t)d(t)e(t) −
2a(t)c(t)d(t)e(t)u(t)

v(t)
+

2a(t)c(t)d(t)u3(t)

v2(t)

> a(t)d(t)

(
b(t)e(t) −

2c(t)e(t)u(t)

v(t)

)
> 0.

Now, let us state the main result:

THEOREM 3. For EG-M model with conditions (2), there exists only one T -
periodic solution x0(t) in D, and x0(t) is locally uniformly asymptotically stable.

2 Preliminary

Consider the nonlinear system

ẋ(t) = V (t, x(t)), x(t0) = x0, x(t) ∈ R
2. (5)

LEMMA 4. If x∗(t) is an exponentially stable solution of (5), then it is also a
uniformly asymptotically stable solution of (5).

For proof, see [3, p. 178-179].

Let X = {x ∈ C([0, T ]) | x(0) = x(T )}. Clearly X is a Banach space with the
supremum norm. Define Lx(t) = ẋ(t) with domain

Dom(L) = {x ∈ C1([0, T ]) | x(0) = x(T )}.

It is easy to verify that Dom(L) is contained in X , the range of L is Im(L) = {z(t) ∈

X |
∫ T

0
z(t)dt = 0} and L is a Fredholm mapping of index 0. Let

Θ = {x ∈ Dom(L) | x(t) ∈ D, ∀t ∈ [0, T ]}. (6)

Define F1 : Θ → X by F1(x) = F (·, x(·)) and H1(x)(t) = F1(x)(t) − Lx(t).
Now, construct a homotopy family

Hλ : (Dom(L) ∩ Θ) × [0, 1] → X

to be of the form
Hλ(x)(t) = Fλ(x)(t) − Lx(t), (7)

where Fλ : Θ × [0, 1] → X with

Fλ(x)(t) =

(
a(t)(1 − b̃(t)u(t) + c̃(t)

u
2(t)

v(t) )

d(t)(u2(t) − ẽ(t)v(t))

)
. (8)
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Here b̃(t) = 1.9(1−λ)+λb(t), c̃(t) = 0.05(1−λ)+λc(t) and ẽ(t) = 0.8(1−λ)+λe(t)
with λ ∈ [0, 1]. It is easy to verify that Fλ : Θ × [0, 1] → X is L-compact. For more
details of degree theory, see [5, Ch. I–IV].

LEMMA 5. Given λ ∈ [0, 1], if xλ(t) ∈ Θ is a T -periodic solution of the system

ẋ(t) = Fλ(x)(t), (9)

then ∂D is an a priori bound of xλ(t).

PROOF. Clearly, b̃(t), c̃(t) and ẽ(t) satisfy conditions (2). System (9) is an EG-M
model. By Lemma 1, D is still a strictly positively invariant region of system (9). None
of T -periodic solutions of (9) in Θ can touch the boundary of D.

COROLLARY 6. 0 6 ∈Hλ((Dom(L) ∩ ∂D) × [0, 1]).

LEMMA 7. DL(H0(x)(t), Θ) = DB(H0(x)(t),D) = 1, where DL denote Leray-
Schauder degree and DB denote Brouwer degree.

PROOF. For the system H0(x)(t) = 0, there is only one steady-state

p =

(
1.04

1.9
,

(
1.04

1.9

)2
1

0.8

)

in the strictly positively invariant region D, which is a trivial T -periodic solution.
Since H0(x)(t) = 0 is an autonomous system, Proposition 2 and Bendixson’s Criteria
guarantee that p is only one T -periodic solution in D.

For the system H0(x)(t) = 0, Leray-Schauder degree of H0 in D is in fact reduced
into Brouwer degree. Therefore, by Proposition 2,

DL(H0(x)(t), Θ) = DB(H0(x)(t),D) = DB(F0(x)(t),D) = sign(det A1(t)) = 1,

where

A1(t) =

(
−1.9a + 0.1au(t)

v(t)
−0.05au

2(t)
v2(t)

2du(t) −0.8d

)
.

For more details, see the similar proof in [4].

LEMMA 8. For system (4) with conditions (2), zero is the only T -periodic solution.

PROOF. Suppose (4) has a non-trivial T -periodic solution called W1(t). By Propo-
sition 2 and Floquet theory [2, p. 93-105], its orbit Γ is an orbitally asymptotically
stable. For s ∈ R, sW1(t) is also a T -periodic solution of (4). Then orbit of sW1(t)
can not be attracted to Γ for any s ∈ R. This leads a contradiction to the orbital
asymptotic stability of Γ.

REMARK 9. For the linear system (4), if tr(A(t)) does not change sign in some
simply connected region E ⊂ R

2, then (4) has no non-trivial periodic solution in
E; since the system (4) is a linearization of an non-autonomous system, Bendixson’s
Criteria can not be used to prove Lemma 8.

LEMMA 10. Suppose F : X → X is a completely continuous map of a Banach
space such that F(0) = 0 and F is Frechet differentiable at 0 with Frechet derivative
T ∈ K(X ), where K(X ) is a set of all compact operators defined on X . If I−T ∈ L(X )
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is regular (invertible), then there exists η > 0 such that, for B = {x ∈ X : ‖x‖∞ < η},
we have

D(F − I, B) = D(T − I, B).

For proof, see [1, Ch. 14].

Assume system (4) is the linearization of system (1) with respect to x0(t), by
Theorem 2.10 of [2, p.97], system (4) can be transformed into an autonomous system

Ż(t) = RZ(t), (10)

where R is called a Monodromy matrix of A(t).

LEMMA 11. Let A(t) and W (t) be defined in (4), LW (t) = Ẇ (t); B(x0(t), ε) ⊂ Θ
denote a small neighborhood of x0(t), B(0, ε) ⊂ Θ\{x0(t)} denote a small neighborhood
of 0. Set

Q(W (t), λ) = (λR + (1 − λ)A(t))W (t) − LW (t),

then

DB(Q(·, 1), B(0, ε)∩ R
2) = 1.

PROOF. Clearly, tr(R) = ρ1 + ρ2 =
1

T

∫ T

0
tr(A(s))ds(mod

2πi

T
) < 0, where ρ1 and

ρ2 are eigenvalues of R. By Proposition 2, for any λ ∈ [0, 1],

tr(λR + (1 − λ)A(t)) = λtr(R) + (1 − λ)tr(A(t)) < 0,

and Remark 9 implies that Q(W (t), λ) = 0 has only one trivial T -periodic solution in
B(0, ε). By degree invariance with respect to homotopy family,

DL(Q(·, 0), B(0, ε)) = DL(Q(·, 1), B(0, ε)) = DB(Q(·, 1), B(0, ε)∩ R
2).

Consider the Taylor expansion of H1(x)(t) at x0(t) ∈ B(x0(t), ε), where H1(x)(t) is
defined in (7) as λ = 1. Then we have

H1(x)(t) = H1(x0)(t) + M(t)(x(t) − x0(t)) + h(t, x(t)− x0(t)),

where M = F ′

1 − L is (H1)
′

x and h(t, x(t) − x0(t)) is a function of o(‖x(t) − x0(t)‖∞).
Since x0(t) is the unique solution of H1(x)(t) = 0 in D, by excision property of the
degree, DL(H1(x)(t), Θ) = DL(H1(x)(t), B(x0(t), ε)) and by Lemma 10,

DL(H1(x)(t), B(x0(t), ε)) = DL(M(t)(x(t) − x0(t)), B(x0(t), ε)).

Let W (t) = x(t) − x0(t), then by Lemma 7,

DL(H0(x)(t), Θ) = DL(H1(x)(t), Θ)

= DL(M(t)W (t), B(0, ε)) = DL(Q(·, 0), B(0, ε))

= DL(Q(·, 1), B(0, ε)) = DB(Q(·, 1), B(0, ε)∩ R
2) = 1.
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3 Proof of Theorem 3

PROOF. (Existence) Combine Lemma 5, Corollary 6 and Lemma 7, by a general
existence theorem of the Leray-Schauder type, we get

DL(H1(x)(t), Θ) = DL(H0(x)(t), Θ) = DB(F0(x)(t),D) = 1,

which implies that there at least exists one T -periodic solution x0(t) = (u0(t), v0(t))
T

of EG-M model in D. If a, b, c, d and e are constants, it is easy to show that there is
only one trivial T -periodic solution x0 ∈ int(D), otherwise, we can easily verify that
x0(t) is a nontrivial T -periodic solution of EG-M model in D by substituting x0(t) into
EG-M model.

(Uniqueness) Define CT = {x(t) ∈ Θ|x(t) satisfies (1) with conditions (2)}. Since
x0(t) ∈ CT , CT is not an empty set. If a, b, c, d and e are constants, there is only one
constant solution in CT .

If one of a(t), b(t), c(t), d(t) and e(t) is a non-trivial T -periodic function, then x0(t) ∈
CT is a non-trivial T -periodic solution. Assume CT is not a singleton; we pick

x1(t) =

(
u1(t)
v1(t)

)
, x2(t) =

(
u2(t)
v2(t)

)
,

in CT and substitute them into (1) to get

ẋi(t) = F (t, xi(t)), i = 1, 2. (11)

Define z(t) = x1(t) − x2(t). By the mean value theorem, we get

ż(t) = z(t)

∫ 1

0

F
′

x
[t, x2(t) + θ(x1(t) − x2(t))]dθ, (12)

and

∫ 1

0

F
′

x
[t, x2(t) + θ(x1(t) − x2(t))]dθ =

(
−a(t)b(t) + 2a(t)c(t)m(t) −a(t)c(t)n(t)

2u(t)d(t) −d(t)e(t)

)
,

where

m(t) =

∫ 1

0

u2(t) + θ(u1(t) − u2(t))

v2(t) + θ(v1(t) − v2(t))
dθ,

n(t) =

∫ 1

0

[u2(t) + θ(u1(t) − u2(t))]
2

[v2(t) + θ(v1(t) − v2(t))]2
dθ.

By (3)

m(t) ≤ 2(u1(t) + u2(t)) ≤ 2.8.

From (2), it follows

tr

(∫ 1

0

F
′

x[t, x2(t) + θ(x1(t) − x2(t))]dθ

)
= −d(t)e(t) − a(t)b(t) + 2a(t)c(t)m(t) < 0.
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This implies that the zero solution is the only one T -periodic solution for (12) by
Remark 9. Hence, x1(t) = x2(t). CT is a singleton.

(Stability) If a(t), b(t), c(t), d(t) and e(t) are constant functions, then x0 ∈ D is a
constant solution of system (1). By Proposition 2, x0 is a locally uniformly asymptot-
ically stable solution.

If one of a(t), b(t), c(t), d(t) and e(t) is a non-trivial T -periodic function, x0(t) is a
non-trivial T -periodic solution of system (1). By Proposition 2, one Floquet exponent
ρ1 has negative real part. If Real(ρ2) < 0, x0(t) is locally uniformly asymptotically
stable by Theorem 2.13 of [2, p.101] and Lemma 4.

To show that Real(ρ2) < 0 always holds by treating these two cases: (1) ρ2 is
a complex number. Notice that ρ1 and ρ2 are conjugate eigenvalues of R. Thus
Real(ρ2) < 0; (2) ρ2 is a real number. Clearly ρ1 is also a real number and ρ1 < 0
implies that ρ2 6= 0 (otherwise, it is a contradicts Lemma 8. If ρ2 > 0, then det(R) < 0,
sign(det(R)) = −1 = DB(Q(·, 1), B(0, ε)∩ R

2), which contradicts Lemma 11.

Acknowledgment. This work was supported by Research Fund of North China
Electric Power University (93509001).

References

[1] R. F. Brown, A Topological Introduction to Nonlinear Analysis, Birkhäuser,
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