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Abstract

It is well known that the Wiener-Hopf equations are equivalent to the general
variational inequalities. We use this alternative equivalent formulation to study
the sensitivity of the general variational inequalities without assuming the dif-
ferentiability of the given data. Since the general variational inequalities include
classical variational inequalities, quasi (mixed) variational inequalities and com-
plementarity problems as special cases, results obtained in this paper continue to
hold for these problems. In fact, our results can be considered as a significant
extension of previously known results.

1 Introduction

Variational inequalities are being used as mathematical programming models to study
a large number of equilibrium problems arising in finance, economics, transportation,
optimization , operations research and engineering sciences, see, for example [1-23] and
the references therein. The behavior of such equilibrium solutions as a result of changes
in the problem data is always of concern. In this paper, we study the sensitivity analysis
of a class of variational inequalities, that is, examining how solutions of such problems
change when the data of the problems are changed. We remark that sensitivity analysis
is important for several reasons. First, since estimating problem data often introduces
measurement errors, sensitivity analysis helps in identifying sensitive parameters that
should be obtained with relatively high accuracy. Second, sensitivity analysis may
help to predict the future changes of the equilibrium as a result of changes in the gov-
erning systems. Third, sensitivity analysis provides useful information for designing
or planning various equilibrium systems. Furthermore, from mathematical and engi-
neering points of view, sensitivity analysis can provide new insight regarding problems
being studied and can stimulate new ideas for problem solving. Over the last decade,
there has been increasing interest in studying the sensitivity analysis of variational in-
equalities and variational inclusions. Sensitivity analysis for variational inclusions and
inequalities has been studied by many authors including Tobin [21], Kyparisis [6,7],
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Dafermos [3], Qiu and Magnanti [18], Yen [22], Noor [11-14], Moudafi and Noor [9],
Noor and Noor [16] and Liu [8] using quite different techniques. The techniques sug-
gested so far vary with the problem being studied. Dafermos [3] used the fixed-point
formulation to consider the sensitivity analysis of the classical variational inequalities.
This technique has been modified and extended by many authors for studying the sen-
sitivity analysis of other classes of variational inequalities and variational inclusions,
see [1,9,11,12, 18,21-23] and the references therein.

Variational inequalities have been extended and generalized in various directions
using the novel and innovative techniques, which proved to be productive and use-
ful. Noor [11,12] has introduced a new class of variational inequalities involving three
operators and is known as the extended general variational inequality. It has been
shown in [11,12] that the minimum of a class of differentiable nonconvex functions on
a nonconvex set can be characterized via the extended general variational inequalities.
Furthermore, this class is quite general and includes the general variational inequali-
ties introduced by Noor [10] in 1988, the classical variational inequalities introduced
by Stampacchia [20] in 1964 and several other optimization problems as special cases.
This clearly shows that the extended general variational inequalities are unifying one
and has significant applications in different fields of pure and applied sciences.

In this paper, we study the sensitivity analysis of the extended general variational
inequalities. We first establish the equivalence between the general variational inequal-
ities and the Wiener-Hopf equations by using the projection operator method. This
fixed-point formulation is obtained by a suitable and appropriate rearrangement of the
Wiener-Hopf equations. We would like to point out that the Wiener-Hopf equations
technique is quite general, unified, flexible and provides us with a new approach to
study the sensitivity analysis of variational inclusions and related optimization prob-
lems. We use this equivalence to develop sensitivity analysis for the extended general
variational inequalities without assuming the differentiability of the given data. Our re-
sults can be considered as significant extensions of the results of Dafermos [3], Moudafi
and Noor [9], Noor [13] and others in this area.

2 Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and
‖.‖ respectively. Let K be a nonempty closed convex set in H .

For given nonlinear operators T, g, h : H → H , consider the problem of finding
u ∈ H, h(u) ∈ K such that

〈ρTu + h(u) − g(u), g(v) − h(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (1)

where ρ > 0 is a constant. Inequality of type (1) is introduced and studied by Noor
[11,12, 15] . It has been shown [15] that the minimum of a class of differentiable
nonconvex function on a nonconvex set can be characterized by the the extended general
variational inequalities (1).

If h = I, the identity operator, then problem (1) is equivalent to finding u ∈ K

such that
〈ρTu + u− g(u), g(v) − u〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (2)
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which is called the general variational inequality, introduced and studied by Noor [15].
It can be shown that a wide class of problems arising in pure and applied sciences can
be studied via the variational inequality (2).

We now list some special cases of the extended general variational inequalities.

I. I f g = h, then Problem(1) is equivalent to finding u ∈ H : g(u) ∈ K such that

〈Tu, g(v) − g(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (3)

which is known as general variational inequality, introduced and studied by Noor [10] in
1988. It turned out that odd order and nonsymmetric obstacle, free, moving, unilateral
and equilibrium problems arising in various branches of pure and applied sciences can
be studied via general variational inequalities, see [9-15].

II. For g ≡ I, the identity operator, the extended general variational inequality
(2.1) collapses to: find u ∈ H : h(u) ∈ K such that

〈Tu, v − h(u)〉 ≥ 0, ∀v ∈ K, (4)

which is also called the general variational inequality, see Noor [14].
III. For g = h = I, the identity operator, the extended general variational

inequality (1) is equivalent to finding u ∈ K such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ K, (5)

which is known as the classical variational inequality and was introduced in 1964 by
Stampacchia [20]. For the recent applications, numerical methods, sensitivity analy-
sis, dynamical systems and formulations of variational inequalities, see [1-23] and the
references therein.

IV. If K∗ = {u ∈ H ; 〈u, v〉 ≥ 0, ∀v ∈ K} is a polar(dual) convex cone of a closed
convex cone K in H, then problem (1) is equivalent to finding u ∈ H such that

g(u) ∈ K, Tu ∈ K∗, 〈g(u), Tu〉 = 0, (6)

which is known as the general complementarity problem. If g = I, the identity
operator, then problem (6) is called the generalized complementarity problem. For
g(u) = u−m(u), where m is a point-to-point mapping, then problem (3) is called the
quasi(implicit) complementarity problem, see [14,17] and the references therein.

From the above discussion, it is clear that the extended general variational inequal-
ities (1) is most general and includes several previously known classes of variational
inequalities and related optimization problems as special cases. These variational in-
equalities have important applications in mathematical programming and engineering
sciences.

We also need the following concepts and results.

LEMMA 2.1. Let K be a closed convex set in H. Then, for a given z ∈ H, u ∈ K

satisfies the inequality
〈u− z, v − u〉 ≥ 0, ∀v ∈ k,

if and only if u = PKz, where PK is the projection of H onto the closed convex
set K in H.
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It is well known that the projection operator PK is a nonexpansive operator.

Related to the extended general variational inequalities (1), we consider the problem
of solving the Wiener-Hopf equations. Let the inverse of the operator h exist. To be
more precise, let QK = I − gh−1PK , where I is the identity operator. For given
nonlinear operators T, g, h, we consider the problem of finding z ∈ H such that

Th−1Pkz + ρ−1QKz = 0, (7)

which is called the extended general Wiener-Hopf equation. We note that if gh−1 = I,

that is, g = h, then the Extended general Wiener-Hopf equation (7) is exactly the
general Wiener-Hopf equation introduced and studied by Noor [14]. In addition if
g = h = I, then one can obtain the original Wiener-Hopf equations, which are mainly
due to Shi [19]. It has been shown that the Wiener-Hopf equations have played an
important and significant role in developing several numerical techniques for solving
variational inequalities and related optimization problems, see [13, 14, 17, 19] and the
references therein.

We now consider the parametric versions of the problem (1) and (7). To formulate
the problem, let M be an open subset of H in which the parameter λ takes values. Let
T (u, λ) be given operator defined on H ×M and take value in H.

From now onward, we denote Tλ(.) ≡ T (., λ), unless otherwise specified.
The parametric general variational inequality problem is to find (u, λ) ∈ H ×M

such that
〈ρTλu+ h(u) − g(u), g(v) − h(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K. (8)

We also assume that for some λ ∈ M , problem (8) has a unique solution u.

Related to the parametric extended general variational inequality (8), we con-
sider the parametric Wiener-Hopf equations. We consider the problem of finding
(z, λ), (u, λ) ∈ H ×M , such that

Tλh
−1PKz + ρ−1QKz = 0, (9)

where ρ > 0 is a constant and QKz is defined on the set of (z, λ) with λ ∈ M and
takes values in H . The equations of the type (9) are called the parametric Wiener-Hopf
equations.

One can establish the equivalence between the problems (8) and (9) by using the
projection operator technique, see Noor [13,14].

LEMMA 2.2. The parametric general variational inequality (8) has a solution
(u, λ) ∈ H×M if and only if the parametric Wiener-Hopf equations (9) have a solution
(z, λ), (u, λ) ∈ H ×M , where

h(u) = PKz (10)

z = g(u) − ρTλ(u). (11)

From Lemma 2.2, we see that the parametric general variational inequalities (8)
and the parametric Wiener-Hopf equations (9) are equivalent. We use this equivalence
to study the sensitivity analysis of the general variational inequalities. We assume
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that for some λ ∈ M , problem (9) has a solution z and X is a closure of a ball in
H centered at z. We want to investigate those conditions under which, for each λ in
a neighborhood of λ, problem (9) has a unique solution z(λ) near z and the function
z(λ) is (Lipschitz) continuous and differentiable.

DEFINITION 2.1. Let Tλ(.) be an operator on X×M . Then, the operator Tλ(.)
is said to :
(a). Locally strongly monotone, if there exists a constant α > 0 such that

〈Tλ(u) − Tλ(v), u − v〉 ≥ α‖u− v‖2, ∀λ ∈M, u, v ∈ X.

(b). Locally Lipschitz continuous, if there exists a constant β > 0 such that

‖Tλ(u) − Tλ(v)‖ ≤ β‖u − v‖, ∀λ ∈M, u, v ∈ X.

3 Main Results

We consider the case, when the solutions of the parametric Wiener-Hopf equations
(11) lie in the interior of X. Following the ideas of Dafermos [3] and Noor [13,14], we
consider the map

Fλ(z) = PKz − ρTλ(u), ∀ (z, λ) ∈ X ×M

= g(u) − ρTλ(u), (12)

where

h(u) = PKz. (13)

We have to show that the map Fλ(z) has a fixed point, which is a solution of the
Wiener-Hopf equations (9). First of all, we prove that the map Fλ(z), defined by (12),
is a contraction map with respect to z uniformly in λ ∈ M .

LEMMA 3.1. Let Tλ(.) be a locally strongly monotone with constant α > 0 and
locally Lipschitz continous with constant β > 0. If that the operators g, h are strongly
monotone with constants σ > 0, µ > 0 and Lipschitz continuous with constants
δ > 0, η > 0 respectively, then, for all z1, z2 ∈ X and λ ∈M , we have

‖Fλ(z1) − Fλ(z2)‖ ≤ θ‖z1 − z2‖,

where

θ =

√
1 − 2σ + δ2 +

√

1 − 2αρ+ β2ρ2

1 −
√

1 − 2µ+ η2
(14)

for

|ρ− α

β2
| <

√

α2 − β2k(2 − k)

β2
, α > β

√

k(2 − k), k < 1, (15)

where

k =
√

1 − 2σ + δ2 +
√

1 − 2µ+ η2, (16)
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PROOF. For all z1, z2 ∈ X, λ ∈M , we have, from (12),

‖Fλ(z1) − Fλ(z2)‖ = ‖g(u1) − g(u2) − ρ(Tλ(u1) − Tλ(u2))‖
≤ ‖u1 − u2 − (g(u1) − g(u2))‖

+‖u1 − u2 − ρ(Tλ(u1) − Tλ(u2))‖. (17)

Using the strongly monotonicity and Lipschitz continuity of the operator g, we have

‖u1 − u2 − (g(u1) − g(u2))‖2 ≤ ‖u1 − u2‖2 − 2〈u1 − u2, g(u1) − g(u2)〉
+‖g(u1) − g(u2)‖2

≤ (1 − 2σ + δ2)‖u1 − u2‖2. (18)

In a similar way, we have

‖u1 − u2 − ρ(Tλ(u1) − Tλ(u2))‖2 ≤ (1 − 2ρα+ β2ρ2)‖u1 − u2‖2, (19)

where α > 0 is the strongly monotonicity constant and β > 0 is the Lipschitz continuity
constant of the operator Tλ respectively.

From (17), (18) and (19), we have

‖Fλ(z1) − Fλ(z2)‖ ≤ {
√

1 − 2σ + δ2 +
√

1 − 2αρ+ β2ρ2}‖u1 − u2‖. (20)

From (13) and using the nonexpansivity of the operator PK , we have

‖u1 − u2‖ ≤ ‖u1 − u2 − (h(u1) − h(u2))‖ + ‖PKz1 − PKz2‖
≤ {

√

1 − 2µ+ η2‖u1 − u2‖ + ‖z1 − z2‖,

from which we obtain

‖u1 − u2‖ ≤ 1

1−
√

1− 2µ+ η2
‖z1 − z2‖, (21)

where µ > 0 is the strongly monotonicity constant and η > 0 is the Lipschitz continuity
constant of the operator h respectively.

Combining (20) and (21), we have

‖Fλ(z1) − Fλ(z2)‖ ≤
√

1 − 2σ + δ2 +
√

1 − 2ρα+ ρ2β2

1 −
√

1 − 2µ+ η2
‖z1 − z2‖

= θ‖z1 − z2‖,

where θ =
√

1−2σ+δ2+

√
1−2αρ+β2ρ2

1−
√

1−2µ+η2
.

Now consider θ < 1. Using (15), we have

k +
√

1 − 2ρα + ρ2β2 < 1,

which shows that (15) holds. Consequently, from (15), it follows that θ < 1 and
consequently the map Fλ(z) defined by (12) is a contraction map and has a fixed point
z(λ), which is the solution of the Wiener-Hopf equation (9).
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REMARK 3.1. From Lemma 3.1, we see that the map Fλ(z) defined by (12) has a
unique fixed point z(λ), that is, z(λ) = Fλ(z). Also, by assumption, the function z, for
λ = λ is a solution of the parametric Wiener-Hopf equations (9). Again using Lemma
3.1, we see that z, for λ = λ, is a fixed point of Fλ(z) and it is also a fixed point of
Fλ(z). Consequently, we conclude that

z(λ) = z = Fλ(z(λ)).

Using Lemma 3.1, we can prove the continuity of the solution z(λ) of the parametric
Wiener-Hopf equations (9) using the technique of Noor [13,14]. However, for the sake
of completeness and to convey an idea of the techniques involved, we give its proof.

LEMMA 3.2. Assume that the operator Tλ(.) is locally Lipschitz continous with
respect to the parameter λ. If the operator Tλ(.) is Locally Lipschitz continuous and
the map λ → PKλ

z is continuous (or Lipschitz continuous), then the function z(λ)
satisfying (5) is (Lipschitz) continuous at λ = λ.

PROOF. For all λ ∈M, invoking Lemma 3.1 and the triangle inequality, we have

‖z(λ) − z(λ̄)‖ ≤ ‖Fλ(z(λ)) − Fλ̄(z(λ̄)‖ + ‖Fλ(z(λ̄)) − Fλ̄(z(λ̄))‖
≤ θ‖z(λ) − z(λ̄)‖ + ‖Fλ(z(λ̄)) − Fλ̄(z(λ̄))‖. (22)

From (12) and the fact that the operator Tλ is a Lipschitz continuous with respect to
the parameter λ, we have

‖Fλ(z(λ̄)) − Fλ̄(z(λ̄))‖ = ‖u(λ̄) − u(λ̄) + ρ(Tλ(u(λ̄), u(λ̄)) − Tλ̄(u(λ̄), u(λ̄)))‖
≤ ρµ‖λ − λ̄‖. (23)

Combining (22) and (23), we obtain

‖z(λ) − z(λ̄)‖ ≤ ρµ

1 − θ
‖λ− λ̄‖, for all λ, λ̄ ∈M,

from which the required result follows.

We now state and prove the main result of this paper and is the motivation our
next result.

THEOREM 3.1. Let u be the solution of the parametric general variational inequal-
ity (8) and z be the solution of the parametric Wiener-Hopf equations (9) for λ = λ.
Let Tλ(u) be the locally strongly monotone Lipschitz continuous operator ∀u, v ∈ X.

If the the map λ→ PK is ( Lipschitz) continuous at λ = λ, then there exists a neigh-
borhood N ⊂ M of λ such that for λ ∈ N , the parametric Wiener-Hopf equations
(9) have a unique solution z(λ) in the interior of X, z(λ) = z and z(λ) is (Lipschitz)
continuous at λ = λ.

PROOF. Its proof follows from Lemmas 3.1, 3.2 and Remark 3.1.

APPLICATIONS. To convey an idea of the applications of the results established
in this paper, we consider the third-order obstacle boundary value problem of finding
u such that

−u′′′ ≥ f(x) on Ω = [0, 1]
u ≥ ψ(x) on Ω = [0, 1]
[−u′′′ − f(x)][u− ψ(x)] = 0 on Ω = [0, 1]
u(0) = 0, u′(0) = 0, u′(1) = 0.















(24)
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where f(x) is a continuous function and ψ(x) is the obstacle function. We study the
problem (24) in the framework of variational inequality approach. To do so, we first
define the set K as

K = {v : v ∈ H2
0 (Ω) : v ≥ ψ on Ω},

which is a closed convex set in H2
0 (Ω), where H2

0(Ω) is a Sobolev (Hilbert) space, see
[2]. One can easily show that the energy functional associated with the problem (24)
is

I[v] = −
∫ 1

0

(

d3v

dx3

) (

dv

dx

)

dx− 2

∫ 1

0

f(x)

(

dv

dx

)

dx, for all dv
dx

∈ K

=

∫ 1

0

(

d2v

dx2

)2

dx− 2

∫ 1

0

f(x)

(

dv

dx

)

dx

= 〈Tv, g(v)〉 − 2〈f, g(v)〉 (25)

where

〈Tu, g(v)〉 =

∫ 1

0

(

d2u

dx2

)(

d2v

dx2

)

dx (26)

〈f, g(v)〉 =

∫ 1

0

f(x)
dv

dx
dx

and g = d
dx

is the linear operator.
It is clear that the operator T defined by (26) is linear, g-symmetric and g-positive.

Using the technique of Noor [14], one can easily show that the minimum u ∈ H of the
functional I[v] defined by (25) associated with the problem (24) on the closed convex
set K can be characterized by the inequality of type

〈Tu, g(v) − g(u)〉 ≥ 〈f, g(v) − g(u)〉, ∀g(v) ∈ K,

which is exactly the problem (1) with h = g and f = 0.
Thus we conclude that all the sensitivity results obtained in this paper can be

used to study the sensitivity properties of the third-order obstacle problems arising in
mathematical and engineering sciences.
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