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Abstract

In this paper, during the 1-parameter closed planar homothetic motions, the
polar moments of inertia for the orbit curves are expressed in the complex plane
and the Holditch type theorem for polar moments of inertia is given. In the case
of the homothetic scale h ≡ 1 the results given by [3] are obtained as a special
case.

1 Introduction

H. R. Müller studied the polar moment of inertia, [3], of the closed orbit curve under
the 1-parameter closed planar motions and the area of the region bounded by the
projection curve under the 1-parameter closed spatial motions, [5]. Combining these
two studies of H. R. Müller, we expressed the polar moment of inertia of the closed
projection curve under the spatial kinematics. We obtained the relation between the
polar moments of inertia of three collinear points and introduced the Holditch type
formula for the polar moments of inertia in spatial motions, [6].

In this paper, we generalize the polar moment of inertia of the closed plane curves
to the homothetic motions. We derive the polar moment of inertia of any fixed point
in plane by means of the polar moments of inertia of three noncollinear points. Thus,
using a triangle instead of a line segment, the results and Holditch-type theorems given
by [3] and [6] are extended under homothetic motions.

2 Preliminaries

Let E and E′ be moving and fixed complex planes and {O; e1, e2} and {O′; e′
1
, e′

2
}

be their orthonormal coordinate systems, respectively. If the vector ~O′O is represented
by the complex number u′ (Figure 1), the motion defined by the transformation

x′ = u′ + hxeiϕ (1)
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272 Polar Moments of Inertia

is called 1-parameter planar homothetic (equiform, [1] ) motion and denoted by E/E′,
where h is the homothetic scale and ϕ is the rotation angle of the motion E/E′, that
is, the angle between the vectors e1 and e′1, and the complex numbers x = x1 + ix2,
x′ = x′

1 + ix′

2 represent the point X ∈ E with respect to the moving and the fixed
rectangular coordinate systems, respectively. The homothetic scale h, the rotation
angle ϕ, x, x′ and u′ are continuously differentiable functions of a real parameter t.
Furthermore, at the initial time t = 0 the coordinate systems are coincident.

Let the complex number u = u1 + iu2 represents the origin of the fixed system in
the moving system. Then, if we take X′ = O′, we obtain x′ = 0 and hx = u. Thus,
we have from Eq.(1)

u′ = −ueiϕ. (2)
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Figure 1. The moving and the fixed planes

During the 1-parameter planar homothetic motion if there exists a number T > 0
such that

u′(t + T ) = u′(t),
ϕ(t + T ) = ϕ(t) + 2πν,
h(t + T ) = h(t), h(0) = h(T ) = 1,







(3)

for all t (the smallest such number T is called the period of the motion), then the motion
E/E′ is called a 1-parameter closed planar homothetic motion, where the integer ν is
the number of rotations of the closed planar homothetic motion. If an equation in (3)
is not satisfied, then the motion is called an open homothetic motion. During such
a motion, the trajectories of the points are open curves. The orientated surface area
swept out by a fixed line segment is studied by [8] and is generalized to the open
homothetic motions by [7]. The polar moments of inertia of the open curves under the
open homothetic motions can be given in a similar way.
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Since ϕ̇(t) = 0 gives pure translation, we assume that

dϕ

dt
= ϕ̇(t) 6= 0

during the homothetic motion E/E′.
If we substitute Eq.(2) into Eq.(1) and then differentiate Eq.(1) with respect to t,

we get the sliding velocity of a fixed point X ∈ E as

Vf = (ḣ + ihϕ̇)xeiϕ − (u̇ + iuϕ̇)eiϕ.

Then, during E/E′, using Vf = 0, we get the moving pole point p = p1 + ip2 as

p =
u̇ + iuϕ̇

ḣ + ihϕ̇

and we find for u

u1 = p1h +
p2dh

dϕ
− du2

dϕ
, u2 = p2h − p1dh

dϕ
+

du1

dϕ
. (4)

We assume that ν > 0 throughout this study.
The Steiner point S, which is the center of gravity of the moving pole curve (P ) for

the distribution of mass with density h2dϕ, is given by

s = s1 + is2 =

∮

ph2dϕ
∮

h2dϕ
, (5)

where the integrations are taken along the closed pole curve (P ).
Furthermore, using the mean-value theorem for integration of a continuous function,

we have
∮

h2dϕ = 2h2
0πν, (6)

where h0 := h(t0), t0 ∈ [0, T ].

3 The Polar Moment of Inertia of the Orbit Curve

I.

Let X be a fixed point in E and (X) be the orbit curve of X. Then, the polar
moment of inertia TX of (X) is given by

TX =

∮

x′x′dϕ, (7)

where x′ is given by Eq.(1) and the integration is taken along the closed orbit curve
(X) in E′, [3].
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Using the equations

u′ = −ueiϕ , u′ = −ue−iϕ,

from Eq.(1) we get
x′x′ = u′u′ − hux− hux + h2xx. (8)

Hence, by substituting Eq.(8) into Eq.(7), we obtain

TX =

∮

u′u′dϕ − 2x1

∮

u1hdϕ − 2x2

∮

u2hdϕ + xx

∮

h2dϕ. (9)

If X = O(x1 = x2 = 0) is taken, then, for the polar moment of inertia of the origin
point O we have

TO =

∮

u′u′dϕ. (10)

Substituting the Eqs.(4), (5), (6) and (10) into Eq.(9) yields

TX = TO + 2h2
0πν(xx− xs− xs) + (xη + xη), (11)

where x, s and η are complex conjugates of x, s and η, respectively, η = η1 + iη2 and

η1 =

∮

(−hp2dh + hdu2) , η2 =

∮

(hp1dh− hdu1). (12)

Then, we may give the following theorem.

THEOREM 1. Let us consider the 1-parameter closed planar homothetic motions.
All the fixed points of the moving plane whose orbit curves have equal polar moment
of inertia lie on the same circle with the center

c = s − 1

2h2
0πν

η (13)

in the moving plane.

SPECIAL CASE 1. In the case of h(t) ≡ 1, we have η = 0. Thus, we get

TX = TO + 2πν(xx− xs− xs),

which was given by H. R. Müller. Also, the center C and the Steiner point S coincide,
[3].

II.

Let X and Y be two fixed points in E, and Z be an arbitrary fixed point on the
line segment XY , that is,

z = λx + ξy, λ + ξ = 1.

Using Eq.(1) we have
z′ = λx′ + ξy′.
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Then, the polar moment of inertia TZ of the curve (Z) is obtained as

TZ =

∮

z′z′dϕ = λ2TX + 2λξTXY + ξ2TY , (14)

where

TXY = TY X =
1

2

∮

(x′y′ + x′y′)dϕ (15)

is called the mixture polar moment of inertia of the curves (X) and (Y ), [3].
If we use Eq.(1) in Eq.(15), the mixture polar moment of inertia is found as

TXY = TO + h2
0πν [xy + xy − (x + y)s− (x + y)s] +

1

2
[(x + y)η + (x + y)η]. (16)

It is clearly seen that TXX = TX .

SPECIAL CASE 2. In the case of h(t) ≡ 1, since η = 0, we get

TXY = TO + πν [xy− xy − (x + y)s − (x + y)s],

which was given by [3].
Let the origin point O and the point C given by Eq.(13) be coincident, i.e. s =

η/2h2
0πν . In this case, we get TO = TC and from the Eqs.(11) and (16) we obtain

TX = 2h2
0πνxx + TC

TXY = h2
0πν(xy + xy) + TC

}

. (17)

Thus, from latter equations, we get

TX > TC for X 6= C (18)

and
TX − 2TXY + TY = 2h2

0πνd2
XY for X 6= Y, (19)

where dXY is the distance between the points X and Y . By the orientation of the line
XY we will distinguish dXY = −dY X .

COROLLARY 1. From Eq.(18), we can say that the orbit curve of the point C has
the minimum polar moment of inertia.

From Eqs.(14) and (19), we get

TZ = λTX + ξTY − 2λξh2
0πνd2

XY . (20)

4 The Holditch Type Theorem for Polar Moments

of Inertia

I.
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THEOREM 2. Let us consider a line segment XY with constant length. If the
endpoints X and Y trace the same closed convex curve in the fixed plane during the
1-parameter planar homothetic motion, then, the point Z on this line segment traces
another closed curve. The difference between the polar moments of inertia of these
curves depends on the distances of Z from the endpoints and the homothetic scale of
the motion.

PROOF. Since X, Y and Z are collinear, we may write

dXZ + dZY = dXY .

Thus, if we denote

λ =
dZY

dXY

, ξ =
dXZ

dXY

,

from Eq.(20) taking ν = 1, we get

TZ =
1

dXY

(dZY TX + dXZTY ) − 2h2
0πdXZdZY . (21)

Since X and Y trace the same closed curve, we have TX = TY . Then, from Eq.(21)
we obtain

TX − TZ = 2h2
0πdXZdZY (22)

which is the equivalent formula to Holditch’s result on areas1, [2].

SPECIAL CASE 3. In the case of h(t) ≡ 1, we get the result given by [3].

II.

Let X1, X2 and X3 be noncollinear fixed points in the moving plane E. Then, for
any fixed point Q in E (Figure 2), we may write

q = λ1x1 + λ2x2 + λ3x3, λ1 + λ2 + λ3 = 1. (23)
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Figure 2. The fixed triangle in the moving plane

1The classical Holditch Theorem: If the endpoints X,Y of a segment of fixed length are rotated
once on an oval, then a given point Z of this segment, with XZ = a, ZY = b, describes a closed, not
necessarily convex, curve. The area of the ring-shaped domain bounded by the two curves is πab.
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If we use Eq.(11), we obtain

TQ = λ2
1TX1

+ λ2
2TX2

+ λ2
3TX3

+ 2λ1λ2TX1X2
+ 2λ1λ3TX1X3

+ 2λ2λ3TX2X3
. (24)

After eliminating the mixture polar moments of inertia by using Eq.(19), we get

TQ = λ1TX1
+λ2TX2

+λ3TX3
−2h2

0πν
{

λ1λ2d
2
X1X2

+ λ1λ3d
2
X1X3

+ λ2λ3d
2
X2X3

}

. (25)

On the other hand, if we consider the point Q1, we may write

q1 = µ1x2 + µ2x3, q = µ3x1 + µ4q1, µ1 + µ2 = µ3 + µ4 = 1.

Thus, we have λ1 = µ3, λ2 = µ1µ4, λ3 = µ2µ4, i.e.

λ1 =
dQQ1

dX1Q1

, λ2 =
dX1QdQ1X3

dX1Q1
dX2X3

, λ3 =
dX1QdX2Q1

dX1Q1
dX2X3

.

Similarly, considering the points Q2 and Q3, respectively, we find

λi =
dQQi

dXiQi

=
dXjQdXkQj

dXjQj
dXkXi

=
dXkQdQkXj

dXkQk
dXiXj

, i, j, k = 1, 2, 3(cyclic)

as given by [4]. Then, from Eq.(25) the generalization of Eq.(20) is found as

TQ =
∑ dQQi

dXiQi

TXi
− 2h2

0πν
∑

(

dXkQ

dXkQk

)2

dQkXj
dXiQk

. (26)

This expression also generalizes the result given for the polar moments of inertia of the
projection curves, [6].

If X1, X2, X3 trace the same closed curve, then the difference between the polar
moments of inertia is

TX1
− TQ = 2h2

0π
∑

(

dXkQ

dXkQk

)2

dQkXj
dXiQk

.

THEOREM 3. Let us consider a fixed triangle in the moving plane. If the vertices
of this triangle trace the same closed curve in the fixed plane during the 1-parameter
planar homothetic motion, then, a different point in the moving plane traces another
closed curve. The difference between the polar moments of inertia of these curves
depends on the distances of the moving triangle and the homothetic scale.

EXAMPLE. Let us consider the 1-parameter planar homothetic motion with u(t) =
sint, h(t) = cost and ϕ(t) = t. In this case, the motion has the period T = 2π and the
rotation number ν = 1. Also, we find

p = s = −i, η = −πi, TO = π

and h2
0 = cos2t0 = 1

2
, t0 = π

4
, 3π

4
∈ [0, 2π]. Now, let us find the polar moments of
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inertia of the orbit curves of the points x = i and x = 2+ i. The point x = i draws the
circle with radius 1 and center at O′; the point x = 2 + i draws the circle with radius√

2 and center at 1 during the homothetic motion (Figure 3). The polar moments of
inertia of these curves are found from Eq.(11) as

Ti = 2π, T2+i = 6π.

��
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6q qrr 2 + i

1

i

E′

Figure 3. The orbit curves in the fixed plane
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