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Abstract

In this paper, we study the problem of uniqueness of an entire function sharing

a small entire function with its derivative. The results in this paper improve a

result given by Brück in 1996, and improve a result given by L. Z. Yang in 1999.

1 Introduction

In this paper, by meromorphic functions we will always mean meromorphic functions
in the complex plane, We adopt the standard notations in the Nevanlinna theory of
meromorphic functions as explained in [3]. It will be convenient to let E denote any
set of positive real numbers of finite linear measure, not necessarily the same at each
occurrence. For any nonconstant meromorphic function h(z), we denote by S(r, h)
any quantity satisfying S(r, f) = o(T (r, f)) (r → ∞, r 6∈ E). Let f and g be two
nonconstant meromorphic functions and let a be a finite complex number. We say
that f and g share a CM, provided that f − a and g − a have the same zeros with the
same multiplicities. Similarly, we say that f and g share a IM, provided that f − a
and g − a have the same zeros ignoring multiplicities. In addition, we say that f and
g share ∞ CM, if 1/f and 1/g share 0 CM, and we say that f and g share ∞ IM, if
1/f and 1/g share 0 IM. Let a(z) be a meromorphic function in the complex plane, if
T (r, a) = S(r, f), then a(z) is called a small function of f(z). In this paper, we also
need the following three definitions.

DEFINITION 1.1. Let f be a nonconstant entire function, the order of f is defined
by

σ(f) = lim sup
r→∞

logT (r, f)

logr
= lim sup

r→∞

log log M(r, f)

log r
,

where, and in the sequel, M(r, f) = max|z|=r |f(z)|.

DEFINITION 1.2. Let f be a nonconstant entire function, the lower order of f is
defined by

µ(f) = lim inf
r→∞

logT (r, f)

logr
= lim inf

r→∞

log log M(r, f)

log r
.
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DEFINITION 1.3. Let f be a nonconstant entire function, the hyper order of f is
defined by

ν(f) = lim sup
r→∞

loglogT (r, f)

logr
= lim sup

r→∞

logloglogM(r, f)

logr
.

In 1977, Rubel and Yang proved the following result.

THEOREM A (see [8]). Let f be a nonconstant entire function. If f and f ′ share
two finite distinct values CM, then f ≡ f ′.

In 1996, R. Brück proved the following theorem.

THEOREM B (see [1]). Let f be a nonconstant entire function satisfying ν(f) < ∞,
where ν(f) is not a positive integer. If f and f ′ share 0 CM, then f ≡ cf ′ for some
finite complex number c 6= 0.

First, consider the differential equation

f(k) − eαf = 0, (1)

where k is a positive integer and α is an entire function.

In this paper, we will prove the following theorem, which improves Theorem B.

THEOREM 1.1 Let f be a nonconstant solution of (1) such that ν(f) < ∞, and let
k be a positive integer, then α is a polynomial, and ν(f) = γα, where γα is the degree
of α.

From Theorem 1.1 we get the following two corollaries.

COROLLARY 1.1. Let f be a nonconstant solution of (1) such that ν(f) < ∞,
where ν(f) is not a positive integer, then f ≡ cf(k) for some finite complex number
c 6= 0.

COROLLARY 1.2. Let f be a nonconstant solution of (1) such that ν(f) < ∞,
where ν(f) is not a positive integer, and let b be a finite nonzero complex number. If
f and f(k) share b IM, then f ≡ f(k).

PROOF. Since f and f(k) share the value b IM, by Hayman’s inequality (see [3,
Theorem 3.5]) we see that there exists a point z0 such that f(z0) = f(k)(z0) 6= 0, which
and Corollary 1.1 reveal the conclusion of Corollary 1.2.

In 1996, Brück made the following conjecture.

CONJECTURE 1.1 (see [1]). Let f be a nonconstant entire function satisfying
ν(f) < ∞, where ν(f) is not a positive integer. If f and f ′ share one finite value a
CM, then f − a ≡ c(f ′ − a) for some finite complex number c 6= 0.

Second, consider the differential equation

F (k) − eQ(z)F = 1, (2)

where k is a positive integer, and Q(z) is an entire function.

In 1999, L. Z. Yang proved the following result.

THEOREM C (see [10, Theorem 1]). Let Q(z) be a nonconstant polynomial and k
be a positive integer. Then every solution F of the differential equation (2) is an entire
function of infinite order.
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In this paper, we will prove the following result, which improves Theorem C.

THEOREM 1.2. Let Q(z) be a nonconstant polynomial and k be a positive integer.
If f is a nonconstant solution of the differential equation

f(k) − a = (f − a) · eQ(z), (3)

where a(z) is a small entire function of f such that σ(a) < γQ, where γQ is the degree
of Q(z), then ν(f) = γQ, and f is an entire function of infinite order.

In the same paper, L. Z. Yang proved the following theorem.

THEOREM D (see [10, Theorem 2]). Let f be a nonconstant entire function of
finite order, and let a(6= 0) be a finite complex number. If f and f(k) share a CM,
where k is a positive integer, then f − a ≡ c(f(k) − a) for some finite complex number
c 6= 0.

From Theorem 1.2 we get the following result, which improves Theorem D.

THEOREM 1.3. Let f be a nonconstant entire function of finite order, and let a(z)
be a small entire function of f, such that σ(a) < 1. If f − a and f(k) − a share 0 CM,
where k is a positive integer, then f − a ≡ c(f(k) − a) for some finite complex number
c 6= 0.

From Theorem 1.3 we get the following two corollaries.

COROLLARY 1.3. Let f be a nonconstant entire function of finite order. If f
and f(k) have the same fixed points with the same multiplicities, where k is a positive
integer, then f − z ≡ c(f(k) − z) for some finite complex number c 6= 0.

COROLLARY 1.4. Let f be a nonconstant entire function of finite order, and let
a(z) be a small entire function of f, such that σ(a) < 1, and let b be a finite complex
number such that a 6≡ b. If f − a and f(k) − a share 0 CM, and if f − b and f(k) − b
share 0 IM, where k is a positive integer, then f ≡ f(k).

PROOF. First, from Theorem 1.3 we see that there exists some finite nonzero
complex number c such that f−a ≡ c(f(k)−a), which implies that T (r, f) = T (r, f(k))+
S(r, f). From this and Lemma 2.6 in Section 2 of this paper we get the conclusion of
Corollary 1.4.

2 Some Lemmas

We state several preparatory Lemmas.

LEMMA 2.1 (see [5, Corollary 2.3.4] or [9, Lemma 1.4]). Let f be a transcendental
meromorphic function and k ≥ 1 be an integer. Then m(r, f(k)/f) = O(log(rT (r, f)),
outside of a possible exceptional set E of finite linear measure, and if f is of finite order
of growth, then m(r, f(k)/f) = O(log r).

LEMMA 2.2 (see [5, Lemma 1.1.1]). Let g : (0, +∞) −→ R, h : (0, +∞) −→ R be
monotone increasing functions such that g(r) ≤ h(r) outside of an exceptional set E of
finite linear measure. Then, for any α > 1, there exists r0 > 0 such that g(r) ≤ h(αr)
for all r > r0.
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LEMMA 2.3 (see [2, Lemma 2]). If f is a transcendental entire function of hyper
order ν(f), then

ν(f) = lim sup
r→∞

loglogν(r, f)

logr
,

where, and in the sequel, ν(r, f) denotes the central-index of f(z).

LEMMA 2.4 (see [5, Proposition 8.1]). Let

w(n) + an−1(z)w(n−1) + · · ·+ a0(z)w = F (z) (4)

be a non-homogeneous linear differential equation with entire coefficients a0(z)(6≡ 0),
a1(z),· · · an−1(z) and F (z)(6≡ 0). Then all solutions of (4) are entire functions.

LEMMA 2.5 (see [4, pp. 36–37] or [5, Theorem 3.1]). If f is an entire function of
order σ(f), then

σ(f) = lim sup
r→∞

logν(r, f)

logr
.

LEMMA 2.6 (see [7, Proof of Lemma 3]). Let f be a nonconstant entire function,
and let a (6≡ ∞) and b (6≡ ∞) be two distinct small functions of f. If f and f(k) share
a and b IM, where k is a positive integer, and if T (r, f) = T (r, f(k)) + S(r, f), then
f ≡ f(k).

3 Proof of Theorems

We now prove our main results.

PROOF OF THEOREM 1.1. Since f is a nonconstant entire function, from (1) we
deduce that f is a transcendental entire function. Again from (1) and Lemma 2.1 we
deduce

T (r, eα) = O(log rT (r, f)) (r 6∈ E). (5)

From (5) and Lemma 2.2 we see that there exists a sufficiently large positive number
r0 such that

T (r, eα) = O(log 2r + logT (2r, f)) (r ≥ r0). (6)

Since ν(f) < ∞, from (6) we deduce

σ(eα) ≤ ν(f) < ∞, (7)

which implies that α is a polynomial and that

σ(eα) = γα, (8)

where γα is the degree of α. On the other hand, from the condition that f is a noncon-
stant entire function, we have

M(r, f) → ∞, (9)

as r → ∞. Again let
M(r, f) = |f(zr)|, (10)
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where zr = reiθ(r), and θ(r) ∈ [0, 2π) is some nonnegative real number. From (10)
and the Wiman-Valiron theory (see [5, Theorem 3.2]), we see that there exists a subset
E1 ⊂ (1,∞) with finite logarithmic measure, i.e.,

∫

E1

dt
t

< ∞, such that for some point

zr = reiθ(r) (θ(r) ∈ [0, 2π)) satisfying |zr | = r 6∈ E1 and M(r, f) = |f(zr)|, we have

f(k)(zr)

f(zr)
=

(

ν(r, f)

zr

)k

(1 + o(1)), (11)

as r → ∞. Substituting (9)-(11) into (1) we get

(

ν(r, f)

zr

)k

(1 + o(1)) = eα(zr), (12)

as r → ∞. From (12) we get

lim sup
r→∞

log log ν(r, f)

log r
≤ lim sup

r→∞

log log( (ν(r,f))k

|zr |k
· |1 + o(1)|)

log r
≤ lim sup

r→∞

log log M(r, eα)

log r
,

and so it follows from Lemma 2.3 that ν(f) ≤ σ(eα). From this and (7)-(8) we get the
conclusion of Theorem 1.1.

PROOF OF THEOREM 1.2. From (3) and Lemma 2.4 we see that every solution
of the equation (3) is a transcendental entire function. Noting that a is a small entire
function of f, from (3) and Lemma 2.1 we can deduce

T (r, eQ) ≤ (k + 3)T (r, f) + O(log rT (r, f)) (r 6∈ E). (13)

From (13) and Lemma 2.2 we see that there exists a sufficiently large positive number
r0, such that

T (r, eQ) ≤ (k + 3)T (2r, f) + O(log 2r + logT (2r, f)) (r ≥ r0), (14)

From (14) we deduce µ(eQ) ≤ µ(f). Combining µ(eQ) = σ(eQ) = γQ ≥ 1 and σ(a) < 1,
we get

µ(f) > σ(a). (15)

Let

Q(z) = qnzn + qn−1z
n−1 + · · ·+ q1z + q0, (16)

where qn (6= 0), qn−1, · · · , q1 and q0 are finite complex numbers. Then from (16) we get

lim
|z|→∞

Q(z)

qnzn
= 1. (17)

From (17) we see that there exists some sufficiently large positive number r0, such that

|Q(z)|

|qnzn|
>

1

e
(|z| > r0). (18)



Y. H. Xiao and X. M. Li 243

From (3) and (18) we deduce

n log r + log |qn| − 1 = log
|qnzn|

e
≤ log |Q| = log | log eQ| ≤ | log log eQ|

= | log log
f(k) − a

f − a
| (|z| > r0),

namely

n log r + log |qn| − 1 ≤ | log log
f(k) − a

f − a
| (|z| > r0). (19)

From the condition that f is a nonconstant entire function we have (9)-(11). Since

f(k) − a

f − a
=

f(k)

f
− a

f

1 − a
f

. (20)

From (9)-(11), (15) and the Definitions 1.1 and 1.2, we get

a(zr)

f(zr)
−→ 0, (21)

as |zr| → ∞. Thus from (11), (19)-(21) we deduce

n log |zr|+ log |qn| − 1 ≤ | log log((
ν(r, f)

zr

)k(1 + o(1)))| (22)

and

log((
ν(r, f)

zr

)k(1 + o(1))) = k(log ν(r, f)− log r − iθ(r)) + o(1), (23)

as r → ∞. We discuss the following two cases.

CASE 1. Suppose that

lim sup
r→∞

logν(r, f)

logr
= ∞. (24)

Noting that θ(r) ∈ [0, 2π), from (23), (24) and Lemma 2.3 we have

lim sup
r→∞

∣

∣

∣

∣

log log

(

(

ν(r,f)
zr

)k

(1 + o(1))

)
∣

∣

∣

∣

log r

≤ lim sup
r→∞

log log ν(r, f)

log r
+ lim sup

r→∞

∣

∣

∣
log

(

1 − log r
log ν(r,f) −

iθ(r)
log ν(r,f)

)
∣

∣

∣

log r

+ lim
r→∞

log 2

log r
+ lim

r→∞

2k1π

log r
+ lim

r→∞

k

log r

= lim sup
r→∞

log log ν(r, f)

log r
= ν(f),
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where k1 is some nonnegative integer. Combining (22) and the condition |zr | = r we
deduce

n ≤ lim sup
r→∞

log log ν(r, f)

log r
= ν(f). (25)

From (16) we have
σ(eQ) = γQ(z) = n. (26)

From (25) and (26) we get
σ(eQ) ≤ ν(f). (27)

On the other hand, from (3), (9)-(11), (20) and (21) we get

(

ν(r, f)

zr

)k

(1 + o(1)) = eQ(zr), (28)

as r −→ ∞. From (24) and (28) we deduce

lim sup
r→∞

log log ν(r, f)

log r
= lim sup

r→∞

log log
(

ν(r,f)
2r

)k

log r

≤ lim sup
r→∞

log log

(

(

ν(r,f)
|zr|

)k

· |1 + o(1)|

)

log r

≤ lim sup
r→∞

log logM(r, eQ(z))

log r
.

From this, Lemma 2.3 and the definition of the order of an entire function we get

ν(f) ≤ σ(eQ). (29)

From (26), (27) and (29) we can get the conclusion of Theorem 1.1.

CASE 2. Suppose that

lim sup
r→∞

logν(r, f)

logr
< ∞. (30)

First, from (30) we deduce
ν(f) = 0. (31)

On the other hand, from (3), (9)-(11), (20), (21), (23) and Lemma 2.5 we deduce
|Q(zr)| = | log eQ(zr)| = |k(log ν(r, f) − log r − iθ(r)) + o(1)| ≤ O(log r), as r → ∞.
Combining the condition that Q(z) is a polynomial, we can deduce Q(z) is a constant,
and so γQ = 0. From this and (31) we get the conclusion of Theorem 1.2.

Theorem 1.2 is thus completely proved.

PROOF OF THEOREM 1.3. From the assumptions of Theorem 1.3 we have

f(k) − a = (f − a) · eβ , (32)

where β is a polynomial. If β is a constant, then the conclusion of Theorem is obvious.
Next we suppose that β is not a constant, and so γβ ≥ 1, where γβ is the degree of β.
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Since σ(a) < 1, thus σ(a) < γβ . Combining (32) and Theorem 1.2 we deduce that f is
an entire function of infinite order, which contradicts the assumption of Theorem 1.3.
Theorem 1.3 is thus completely proved.
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