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Abstract

In the present paper, we estimate the rate of pointwise convergence of the
Chlodowsky operators Cy, for functions, defined on the interval [0, b,] with deriva-
tives of bounded variation, where lim, . b, = co.

1 Introduction

For a function defined on the interval [0, 1], the classical Bernstein operators are

Bn(f;x)—2f<%>pk7n(x), 0<z<1, n>1, (1)
k=0

where pi n(x) = Z 2¥(1 — 2)"* is the Bernstein basis. Bernstein [1] used these

operators (1) to give the first constructive proof of the Weierstrass theorem. It is
well known that if we make the substitution x = ;= and replacing the discrete values
f(£) by f(£by), in the polynomial of Bernstein By (f;x) corresponding to a function

f defined on [0, 1], then one can obtain the following polynomials

Cn(f;x)—kif(%bn) ( . ) (;)k (1— %)nk,ogxgbn 2)

0
where (b,) is a positive increasing sequence with the properties

bn
lim b, = oo, lim — =0.
n—oo n—oo N
These operators are called Bernstein-Chlodowsky operators or Chlodowsky operators.
Operators of type (2) were introduced by Chlodowsky [2] and further modified and
studied by many authors [3-4]. Since the behaviour of Chlodowsky operators are very
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similar to the Bernstein operators, these operators allow us to investigate approxi-
mation properties of functions defined on the infinite interval 0 < z < oo by using
the similar techniques and methods on clasical and modified Bernstein operators. For
example, in [4] Ibikli and Karsli approximated integrable functions on the interval
[0,b,] by what they called “Chlodowsky Type Durrmeyer operators” defined as fol-
lows: D,, : BV[0,00) — P,

n by
Z%UWL_WJUE:mm(;>/f@mm(£>ﬁ,OSxSM,

where pg ., (z) is the Bernstein basis. They estimated the convergence rate of these
D,, operators for functions in BV [0, 00). After this study Karsli [5] obtained their rate
of convergence for functions whose derivatives had bounded variation in [0, c0). It is
useful to mention very recent papers by Karsli and Ibikli [6-7], which deal with the
rate of pointwise convergence of the operators (2) and its Bézier variant in the space
BV |0, by,] respectively.

The concern of this paper is to study the rate of convergence of operators C, to the
limit f of functions with derivatives of bounded variation on the interval [0, b,], (n — o)
extending infinity. At the point z, which is a discontinuity of the first kind of the deriva-
tive, we shall prove that C, (f;z) converge to the limit f(x).

Some authors studied some linear positive operators and obtained the rate of conver-
gence for functions in DBV (I). For example, Bojanic and Cheng investigated the rate
of convergence of Hermite-Fejer polynomials for functions with derivatives of bounded
variation [8] and they also investigated in the paper [9] the asymptotic behavior of
Bernstein polynomials for functions in DBV[0, 1] of all functions f that can be written

as
T

f(z) = £(0) +/\Il(t)dt, z € [0,1],
0

where ¥ € BV0,1]. We also mention some recent studies in this area by Gupta et
al. [10], in which they estimated the rate of convergence of summation-integral-type
operators for functions in vy-weighted space DBV, (0, c0), (v > 0), and by Gupta et al.
[11] and very recent papers by Karsli [12].

Let DBV (I) denote the class of differentiable functions defined on a set I C R,
whose derivatives are bounded variation on I,

DBV(I)={f: f € BV(I)}.

It is clear that the class of functions DBV (I) considered here is much more general
than the class of functions with continuous derivative on I.
For the sake of brevity, let the auxiliary function f, be defined by

f) = fla+t), z<t<by
) - fa-), 0<t<u
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The main theorem of this paper is as follows.

THEOREM. Let f be a function with derivatives of bounded variation on every
finite subinterval of [0,00) and limy,_,o f'(z) exists. Then for every z € (0,00), we
have

bna:

/ _x er
Culfi ) — fa)] < | LEF ]\/ bo=) | B Z Vo) ®

I*—

b
where \/(f.) is the total variation of f. on|a,b].

a

2 Auxiliary Results

In this section we give certain results, which are necessary to prove our main theorems.

As before we let
A(b’b) /au (b’b)du

where 0 <t <b,, and

Tz u > pkﬂl(%)a O0<u<b,
Kyl —,— ) =14 kba<nu . (4)
b, b
n n O, u=0

Then A, (3= ,bt ) < 1. Since the operators (1) and (2) are special cases of Stieltjes

integrals, alternatively we can rewrite the operators (2) in the form of a Stieltjes integral

as follows: ,

0 x t
:/f(t)aKn (E’E) dt.
0

LEMMA 1 ([6]). For Cy,(t%;z), s =0, 1,2, one has

Cn(Liz) = L

Cn(t;x) = =,

C (th) — $2 + M
) n *

By direct calculation, we find the following equalities:

x(by, —

Col(t — 2 2) = D) Cul(t — 2)ia) = 0. (5)

n

LEMMA 2. For all z € (0, 00), let K, (bi bi) be defined by (4), we have for ¢ < «,

w (i) - /a (i) os 0
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PROOF.

t
T t 0 T u r—u\? 8 T u
= - - = = < - e
An (bn’bn> /auK" (bn’bn>du_/<x—t> ouln (bn’bn>du
0 0

From (5), it is easy to see that

x t 1 z(b,—x)
)< .
An (bn’bn> ~ (x—1t)? n

REMARK. From Cauchy-Schwarz-Bunyakowsky inequality, one has

Cullt = z]:2) < (Cu((t — )% 2))F = 4/ 2P 2), ()

n

=

3 Main Result

Now we can prove the main theorem. From (6), we can write the difference between
Cyn(f;x) and f(x) as a Lebesgue-Stieltjes integral,

2%
Culfi) = @) = [17(0) = S(@)) 57 K (bi bi) . ®
0

Since f(t) € DBV[0, b,], we may rewrite (8) as follows:

Cu(f;2) = f(x)

z brn

/ 10 = 1@y (e e [0 = g (2 )

<[ o] iy | o] g (i)

= —11( + Ix(z),

where

and

I(z) = i Vf/(u) du] %Kn (% é) dt. (10)
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For any f(t) € DBV]0,b,], we decompose f(t) into four parts as

f'lat) = f'(z=)
2

P = 5 (@) )+ ) + sgn(t — )

+,0) 1) - 5 (7o) + o)
where
n0={ 5151

If we use this equality in (9) and (10), we have the following expressions

nw - f { [30@n e+ s+ TED L ED g
0 t

+0) 110 = 5 (7 )+ o) au} s (25 )

bn t
@ - [ { [30@n + e+ s+ HELLED g

+0,0) 110 - 3 () + o) au} o (20 )

bn n

Firstly, we evaluate I (z):

L) = f’(x+);f’(x—) /@_t) 9 (35) it
0

x

+f Vf;w) au| Tk, (bibi) dt

0

St Se) /x(x 02k, (bi bi> it
0
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It is obvious that [, (u)du = 0. From this fact, we get
¢

(12)
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From the last expression, we can rewrite (8) as follows:

Clfsa) — fla) = D fa-a g () a
0

On the other hand, since

bn

0 Tz t
/|t—x|§f<n(a,a)dt— (It - a]2)

0

and

/ 0 x t
0

using these equalities in (13) and taking absolute value, we can express (13) as follows;

Culfix) — )] < <x+>;f’ ]|c (t — r:2)
# [P LED 6, 1~ ol

: /{/f o] (1)
+ 7{/@;(@@] %Kn (%é) dt .

(14)

According to (4), we write

/foé(u)du] %Kn (%b ) /[/fx du] = "(Eé) dt.  (15)
o Lt 0
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Using partial integration on the right hand side of (15), we obtain

//fx A(b,b)dt/fx ()

Thus
, Tz t t
_ il e < _
[ /] mKn(bn,bn)dt JIACE (bn bn>dt
0 t 0
and
T T xi%

|
o\
—
kh
8
iy
N
£
QL
N
|
=
VRS
=
S|+
N———
IA
—
=
i
~
>~
VRS
(=
3
S|+
N———
Q
~

t 0
+ / |;(t)|An(bx i) dt
S
Since f;(r) = 0 and A\, (3%, 3-) < 1, one has
= = < ') dt.
[ o () a- / R () s [ Vi
T = s

Make the change of variables ¢ =z — 7, then
/ \/(f2)dt < \/ (f1) / dt.
xfﬁ t xfﬁ T3

From (6), we can write

r—

, Tz t
[ o () ao< st

0

E¥
g
|
S

IA
)
—~~
j=
3
[
8
N—
o
]
—~~
G
QU
~

IA
)
—~~
s
N
8
N—
<=
—~~
T
N—
—~
8
Q
~
=
[\V]
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Make the change of variables ¢ =z — 7 again, we have

x

Ga=a) [\t DN RVIPNESY
T / Vo= - /x\/%(f“ e
Vo] o
b, —x ,
e AVITA
k=1 xff
and hence, we obtain
x [Va] &
, 0 x t T , (b, — ) ,
=[] falw)du] 5 Kn (=, )| < —= (fe) + (f2)
| b// ot by by \/ﬁx\/% n — x\/%
Since
z 2x V]
\/ﬁx\/in n k=1 x\/%
it follows that
s [va] & Vo] o V] o
x b, — , 2z , 2(bp, — ,
VY Ve < B Vs 0 Y V@
xfﬁ k=1z—% k=1z—% k=1z—%
[va] &
2b,, ,
k=1 xff
Therefore
0 x 2by, ,
|—/ {/f;(U)dUI Gk (mr )l < 3= V.
o Lt "o k=1z—%
Using a similar method for estimating, we have
e V] o-bu

|} [/tf;(u) du] %Kn (%é) dt

Furthermore, since
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we can write the following inequality

b _ﬁb%’” ik 2, — ) AN
Vo Z Vo s == Voo
x x =1 x
2z LV b
+;Z \/ (f2)
k=1 x
(Vi) - bus
-5 DIRVART
n k=1 x
Thus we get
T 2b L] o b
//fx wl g (L) <22 Vo w. an)
k=1 x
Putting (5), (7), (16) and (17) in (14), we get (3), i.e.,
/ 2(bp —x)  2by “ i
Caltio) - fo)) < [FEEHZIED folo ), 2 Z

xf_

This completes the proof of the theorem.
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