A Superquadratic Method For Solving Variational Inclusions Under Weak Conditions*

Célia Jean-Alexis[†], Alain Piétrus[‡]

Received 9 March 2007

Abstract

For solving variational inclusions of the form $0 \in f(x) + F(x)$, in [13, 14], the authors proved the convergence of the following method inspired by Hummel-Seebeck $0 \in f(x_k) + \frac{1}{2}(\nabla f(x_k) + \nabla f(x_{k+1}))(x_{k+1} - x_k) + F(x_{k+1})$ where f is a function whose second Fréchet derivative $\nabla^2 f$ satisfies a Lipschitz condition or a Hölder condition. In this paper, we extend these results by assuming a center-Hölder condition on $\nabla^2 f$.

1 Introduction

This paper is concerned with the problem of approximating a solution of variational inclusions of the form

$$0 \in f(x) + F(x) \tag{1}$$

where f is a function and F is a set-valued map defined in two Banach spaces X and Y. This kind of inclusion is an abstract model for various problems: variational problems, optimization and control theory, operations research, complementarity problems, mathematical programming and engineering sciences [10, 15, 16]. For solving (1), the following method has been introduced in [13],

$$0 \in f(x_k) + \frac{1}{2} \left(\nabla f(x_k) + \nabla f(x_{k+1}) \right) (x_{k+1} - x_k) + F(x_{k+1}), \tag{2}$$

where f is a function such that its second Fréchet derivative $\nabla^2 f$ satisfies a Lipschitz condition. The existence of a sequence (x_k) defined by (2) and its convergence to a solution x^* of (1) has been also proved.

Following this work, in [14], the authors extended these results by applying a Hölder condition on the second Fréchet derivative $\nabla^2 f$. This condition reads as follows:

$$\exists \ K>0, \ \alpha\in(0,1], \ \text{such that} \ \|\nabla^2 f(x) - \nabla^2 f(y)\| \leq K \|x-y\|^\alpha, \quad \forall \ x,y\in\Omega,$$

^{*}Mathematics Subject Classifications: 47H04, 65K10.

 $^{^\}dagger Laboratoire AOC, Département de Mathématiques, Université des Antilles et de la Guyane, F-97159 Pointe-à-Pitre, France$

 $^{^{\}ddagger}$ Laboratoire AOC, Département de Mathématiques, Université des Antilles et de la Guyane, F–97159 Pointe–à–Pitre, France

where Ω is a neighborhood of x^* . We can notice that when $\alpha = 1$, we have the Lipschitz condition for $\nabla^2 f$.

In this study, we are interested in the convergence of the method (2) when $\nabla^2 f$ satisfies a center-Hölder assumption :

$$\exists \alpha_0 \in (0,1], \text{ such that } \forall \ x \in \Omega, \ \|\nabla^2 f(x) - \nabla^2 f(x^*)\| \le K_0 \|x - x^*\|^{\alpha_0}$$

The inspiration for considering such a condition comes from [1, 2]. Let us remark that, in some cases, the center-Hölder condition holds whereas the Hölder condition doesn't. Thus, this condition of center-Hölder is weaker than the Hölder one hence allows us to refine the result established in [13, 14].

Throughout, we denote by $\mathbb{B}_r(x)$ the closed ball centered at x with radius r and by $\|.\|$ all the norms. The distance from a point $x \in X$ and a subset $A \subset X$ is defined as $dist(x, A) = \inf_{y \in A} \{\|x - y\|\}$.

Recall that a set-valued $\Gamma: X \longrightarrow 2^Y$ is said to be M-pseudo-Lipschitz around $(x_0, y_0) \in \operatorname{graph} \Gamma$ if there exist constants a and b such that

$$e(\Gamma(x_1) \cap \mathbb{B}_a(y_0), \Gamma(x_2)) \le M ||x_1 - x_2||, \quad \forall x_1, x_2 \in \mathbb{B}_b(x_0),$$

where the excess e from the set A to the set C is defined by $e(C,A) = \sup_{x \in C} dist(x,A)$. The pseudo-Lipschitz property has been introduced by J.-P. Aubin and one refers to it as Aubin-continuity [3, 4, 18]. This property is equivalent to the metric regularity and to linear openness, for more details, the reader could refer to [7, 8, 9]. This concept is necessary for our study and often used for solving inclusions of the form (1), see [5, 11, 17].

2 Convergence analysis

The main result is the following theorem:

THEOREM 1. Let x^* be a solution of (1) and let f be a function whose second Fréchet derivative $\nabla^2 f$ satisfies a center-Hölder condition with a constant K_0 and exponent α_0 on a neighborhood Ω of x^* . If the set-valued map $(f+F)^{-1}$ is M-pseudo-Lipschitz around $(0,x^*)$ then for every $c > \frac{MK_0(2\alpha_0^2 + 9\alpha_0 + 8)}{2(\alpha_0 + 1)(\alpha_0 + 2)}$, one can find $\delta > 0$ such that for every starting point $x_0 \in \mathbb{B}_{\delta}(x^*)$, there exists a sequence (x_k) for (1), defined by (2), which satisfies

$$||x_{k+1} - x^*|| \le c||x_k - x^*||^{\alpha_0 + 2} \tag{3}$$

that is, (x_k) is superquadratically convergent to x^* .

In the proof of Theorem 1, we need two lemmas:

LEMMA 1. If $f: X \to Y$ is a function such that ∇f is Lipschitz then the following are equivalent:

- (i) The mapping $(f+F)^{-1}$ is pseudo-Lipschitz around (y^*, x^*) .
- (ii) The mapping $[f(x^*) + \frac{1}{2}(\nabla f(x^*) + \nabla f(\cdot))(\cdot x^*) + F(\cdot)]^{-1}$ is pseudo-Lipschitz around (y^*, x^*) .

The reader can consult the proof of this lemma in [13].

LEMMA 2. Let (X, ρ) be a complete metric space, let ϕ be a map from X into the closed subsets of X, let $\eta_0 \in X$ and let r and λ be such that $0 \le \lambda < 1$ and

- (a) dist $(\eta_0, \phi(\eta_0)) \leq r(1 \lambda)$,
- (b) $e(\phi(x_1) \cap \mathbb{B}_r(\eta_0), \phi(x_2)) \le \lambda \ \rho(x_1, x_2), \ \forall x_1, x_2 \in \mathbb{B}_r(\eta_0),$

then ϕ has a fixed point in $\mathbb{B}_r(\eta_0)$. That is, there exists $x \in \mathbb{B}_r(\eta_0)$ such that $x \in \phi(x)$. If ϕ is single-valued, then x is the unique fixed point of ϕ in $\mathbb{B}_r(\eta_0)$.

This lemma is a generalization of a fixed-point theorem of Ioffe-Tikhomirov [12]. The reader can consult its proof in [6].

For a better understanding of Theorem 1, let us introduce a few notation. For $k \in \mathbb{N}$ and $x_k \in X$, we define the maps $P: X \to 2^Y$ and $\phi_k: X \to 2^X$ by

$$P(x) = f(x^*) + \frac{1}{2} \left(\nabla f(x^*) + \nabla f(x) \right) (x - x^*) + F(x) \quad \text{and} \quad \phi_k(x) = P^{-1}[Z_k(x)],$$

where

$$Z_k(x) = f(x^*) + \frac{1}{2} \left(\nabla f(x^*) + \nabla f(x) \right) (x - x^*) - f(x_k) - \frac{1}{2} \left(\nabla f(x_k) + \nabla f(x) \right) (x - x_k).$$

We remark that x_1 is a fixed point of ϕ_0 if and only if if we have

$$0 \in f(x_0) + \frac{1}{2} \left(\nabla f(x_0) + \nabla f(x_1) \right) (x_1 - x_0) + F(x_1).$$

Proceeding by induction, we show that the function ϕ_k has a fixed point x_{k+1} in X. Thus, we have the existence of a sequence (x_k) defined by (2) which satisfies (3).

PROOF. The map $(f+F)^{-1}$ is M-pseudo-Lipschitz around $(0,x^*)$ then there exist positive numbers a and b such that

$$e(P^{-1}(y') \cap \mathbb{B}_a(x^*), P^{-1}(y'')) \le M||y' - y''||, \ \forall y', y'' \in \mathbb{B}_b(0).$$
 (4)

Choose $\delta > 0$ such that

$$\delta < \min\left\{a, \frac{1}{\alpha_0 + \sqrt[4]{c}}, \left[\frac{2b(\alpha_0 + 1)(\alpha_0 + 2)}{K_0(2\alpha_0^2 + 9\alpha_0 + 8)}\right]^{\frac{1}{\alpha_0 + 2}}, \left[\frac{2b(\alpha_0 + 1)(\alpha_0 + 2)}{K_0(18\alpha_0^2 + 57\alpha_0 + 40)}\right]^{\frac{1}{\alpha_0 + 2}}\right\}. \quad (5)$$

We apply Lemma 2 to the map ϕ_0 with $\eta_0 = x^*$ and r and λ are numbers to be set. Let us check that assertions (a) and (b) of this lemma are satisfied.

From the definition of the excess e, we have

dist
$$(x^*, \phi_0(x^*)) \le e(P^{-1}(0) \cap \mathbb{B}_{\delta}(x^*), \phi_0(x^*)).$$
 (6)

For all $x_0 \in \mathbb{B}_{\delta}(x^*)$ such that $x_0 \not= x^*$, we have

$$\begin{split} &\|Z_0(x^*)\| \\ &= \|f(x^*) - f(x_0) - \frac{1}{2} \Big(\nabla f(x_0) + \nabla f(x^*) \Big) (x^* - x_0) \| \\ &= \|f(x^*) - f(x_0) - \nabla f(x_0) (x^* - x_0) - \frac{1}{2} \nabla^2 f(x_0) (x^* - x_0)^2 \\ &- \frac{1}{2} (\nabla f(x^*) - \nabla f(x_0) - \nabla^2 f(x_0) (x^* - x_0)) (x^* - x_0) \| \\ &\leq \|\int_0^1 (1 - t) \nabla^2 f(x_0 + t(x^* - x_0)) (x^* - x_0)^2 dt - \frac{1}{2} \nabla^2 f(x_0) (x^* - x_0)^2 \| \\ &+ \frac{1}{2} \|x^* - x_0\| \cdot \|\int_0^1 \nabla^2 f(tx^* + (1 - t)x_0) dt (x^* - x_0) - \int_0^1 \nabla^2 f(x_0) dt (x^* - x_0) \| \\ &\leq \|\int_0^1 (1 - t) \Big[\nabla^2 f(x_0 + t(x^* - x_0)) - \nabla^2 f(x_0) \Big] (x^* - x_0)^2 dt \| \\ &+ \frac{1}{2} \|x^* - x_0\|^2 \int_0^1 \|\nabla^2 f(tx^* + (1 - t)x_0) - \nabla^2 f(x_0) \| dt \\ &\leq \|\int_0^1 (1 - t) \Big[\nabla^2 f(x_0 + t(x^* - x_0)) - \nabla^2 f(x^*) + \nabla^2 f(x^*) - \nabla^2 f(x_0) \Big] \\ &(x^* - x_0)^2 dt \| + \frac{1}{2} \|x^* - x_0\|^2 \int_0^1 \|\nabla^2 f(tx^* + (1 - t)x_0) - \nabla^2 f(x^*) dt \\ &+ \nabla^2 f(x^*) - \nabla^2 f(x_0) \| \\ &\leq K_0 \|x^* - x_0\|^2 \int_0^1 (1 - t) \Big[\|x_0 + t(x^* - x_0) - x^*\|^{\alpha_0} + \|x^* - x_0\|^{\alpha_0} \Big] dt \\ &+ \frac{1}{2} K_0 \|x^* - x_0\|^2 \int_0^1 \Big[(1 - t)(x_0 - x^*)\|^{\alpha_0} + \|x^* - x_0\|^{\alpha_0} \Big] dt \\ &\leq K_0 \|x^* - x_0\|^{\alpha_0 + 2} \int_0^1 \Big[(1 - t)^{\alpha_0 + 1} + 1 - t \Big] dt \\ &+ \frac{1}{2} K_0 \|x^* - x_0\|^{\alpha_0 + 2} \int_0^1 \Big[(1 - t)^{\alpha_0 + 1} + 1 - t \Big] dt \\ &\leq \frac{K_0(\alpha_0 + 4)}{2(\alpha_0 + 2)} \|x^* - x_0\|^{\alpha_0 + 2} + \frac{K_0(\alpha_0 + 2)}{2(\alpha_0 + 1)(\alpha_0 + 2)} \|x^* - x_0\|^{\alpha_0 + 2}. \end{split}$$

Thanks to (5), we obtain $Z_0(x^*) \in \mathbb{B}_b(0)$.

From this result and the definition of ϕ_0 and (4), we get

$$\begin{aligned}
\operatorname{dist} (x^*, \phi_0(x^*)) &\leq e(P^{-1}(0) \cap \operatorname{IB}_{\delta}(x^*), P^{-1}[Z_0(x^*)]) \\
&\leq M \|Z_0(x^*)\| \\
&\leq \frac{MK_0(2\alpha_0^2 + 9\alpha_0 + 8)}{2(\alpha_0 + 1)(\alpha_0 + 2)} \|x^* - x_0\|^{\alpha_0 + 2}.
\end{aligned} \tag{7}$$

Since $c>\frac{MK_0(2\alpha_0^2+9\alpha_0+8)}{2(\alpha_0+1)(\alpha_0+2)}$, one can find $\lambda\in]0,1[$ such that $c(1-\lambda)\geq\frac{MK_0(2\alpha_0^2+9\alpha_0+8)}{2(\alpha_0+1)(\alpha_0+2)}$ Hence,

$$\operatorname{dist} (x^*, \phi_0(x^*)) < c(1 - \lambda) \|x^* - x_0\|^{\alpha_0 + 2}. \tag{8}$$

By setting $r=r_0=c\|x^*-x_0\|^{\alpha_0+2}$, condition (a) of Lemma 2 is fulfilled. Let us observe that from (5), $r_0\leq\delta\leq a$. For $x\in{\rm I\!B}_\delta(x^*)$, using (5), we have

$$\begin{split} \|Z_0(x)\| &= \|f(x^*) + \frac{1}{2} \Big(\nabla f(x^*) + \nabla f(x) \Big) (x - x^*) \\ &- f(x_0) - \frac{1}{2} \Big(\nabla f(x_0) + \nabla f(x) \Big) (x - x_0) \| \\ &\leq \|f(x^*) - f(x) - \nabla f(x) (x^* - x) - \frac{1}{2} \nabla^2 f(x) (x - x^*)^2 \| \\ &+ \|f(x) - f(x_0) - \nabla f(x_0) (x - x_0) - \frac{1}{2} \nabla^2 f(x_0) (x - x_0)^2 \| \\ &+ \frac{1}{2} \|\nabla f(x^*) - \nabla f(x) - \nabla^2 f(x) (x^* - x) \| . \|x^* - x\| \\ &+ \frac{1}{2} \|\nabla f(x) - \nabla f(x_0) - \nabla^2 f(x_0) (x - x_0) \| . \|x - x_0\| \\ &\leq K_0 \|x^* - x\|^2 \int_0^1 (1 - t) \Big[\|x + t(x^* - x) - x^*\|^{\alpha_0} + \|x^* - x\|^{\alpha_0} \Big] dt \\ &+ K_0 \|x - x_0\|^2 \int_0^1 (1 - t) \Big[\|x_0 + t(x - x_0) - x^*\|^{\alpha_0} + \|x^* - x_0\|^{\alpha_0} \Big] dt \\ &+ \frac{1}{2} K_0 \|x^* - x\|^2 \int_0^1 \Big[\|(1 - t)(x - x^*)\|^{\alpha_0} + \|x^* - x\|^{\alpha_0} \Big] dt \\ &+ \frac{1}{2} K_0 \|x - x_0\|^2 \int_0^1 \Big[\|tx + (1 - t)x_0 - x^*\|^{\alpha_0} + \|x^* - x_0\|^{\alpha_0} \Big] dt \\ &\leq K_0 \|x^* - x_0\|^{\alpha_0 + 2} \int_0^1 \Big[(1 - t)^{\alpha_0 + 1} + 1 - t \Big] dt + K_0 \|x - x_0\|^2 \delta^{\alpha_0} \\ &\int_0^1 2(1 - t) dt + \frac{K_0}{2} \|x^* - x\|^{\alpha_0 + 2} \int_0^1 \Big[(1 - t)^{\alpha_0} + 1 \Big] dt \\ &+ \frac{K_0}{2} \|x - x_0\|^2 \delta^{\alpha_0} \int_0^1 2 dt \\ &\leq \frac{K_0(\alpha_0 + 4)}{2(\alpha_0 + 2)} \|x^* - x\|^{\alpha_0 + 2} + K_0 \delta^{\alpha_0} \|x - x_0\|^2 \\ &+ \frac{K_0(\alpha_0 + 2)}{2(\alpha_0 + 2)} \|x^* - x\|^{\alpha_0 + 2} + K_0 \delta^{\alpha_0} \|x - x_0\|^2 \\ &\leq \frac{18\alpha_0^2 + 57\alpha_0 + 40}{2(\alpha_0 + 2)(\alpha_0 + 1)} K_0 \delta^{\alpha_0 + 2} < b. \end{split}$$

It follows that for all $x', x'' \in \mathbb{B}_{r_0}(x^*)$, we have

$$\begin{split} &e(\phi_0(x')\cap \mathbb{B}_{r_0}(x^*),\phi_0(x''))\\ &\leq &e(\phi_0(x')\cap \mathbb{B}_{\delta}(x^*),\phi_0(x''))\\ &\leq &M\|Z_0(x')-Z_0(x'')\|\\ &\leq &\frac{M}{2}\left[\|\nabla f(x^*)-\nabla f(x_0)\|.\|x'-x''\|+\|\nabla f(x')-\nabla f(x'')\|.\|x_0-x^*\|\right]\\ &\leq &\frac{M}{2}\left[\|\nabla f(x^*)-\nabla f(x_0)-\nabla^2 f(x_0)(x^*-x_0)\|\|x'-x''\|\\ &+\|\nabla f(x')-\nabla f(x'')-\nabla^2 f(x'')(x'-x'')\|\|x_0-x^*\|\\ &+\|\nabla^2 f(x'')-\nabla^2 f(x_0)\|\|x'-x''\|\|x_0-x^*\|\right]\\ &\leq &\frac{M}{2}\left[\|x^*-x_0\|\int_0^1\|\nabla^2 f(tx^*+(1-t)x_0)-\nabla^2 f(x^*)+\nabla^2 f(x^*)\\ &-\nabla^2 f(x_0)\|dt\|x'-x''\|+\|x'-x''\|\int_0^1\|\nabla^2 f(tx'+(1-t)x'')\\ &-\nabla^2 f(x^*)+\nabla^2 f(x^*)-\nabla^2 f(x'')\|dt.\|x^*-x_0\|\\ &+\|\nabla^2 f(x'')-\nabla^2 f(x^*)+\nabla^2 f(x^*)-\nabla^2 f(x_0)\|.\|x'-x''\|.\|x_0-x^*\|\right]\\ &\leq &\frac{M}{2}\left[K_0\|x^*-x_0\|\int_0^1(\|tx^*+(1-t)x_0-x^*\|^{\alpha_0}+\|x^*-x_0\|^{\alpha_0})dt\\ &\|x'-x''\|+K_0\|x'-x''\|\int_0^1(\|tx'+(1-t)x''-x^*\|^{\alpha_0}\\ &+\|x^*-x''\|^{\alpha_0})dt\|x^*-x_0\|+\|x'-x''\|\|x_0-x^*\|\\ &(\|\nabla^2 f(x'')-\nabla^2 f(x^*)\|+\|\nabla^2 f(x^*)-\nabla^2 f(x_0)\|)\right]\\ &\leq &\frac{M}{2}\left[K_0\|x^*-x_0\|^{\alpha_0+1}\int_0^1[(1-t)^{\alpha_0}+1]dt.\|x'-x''\|\\ &+K_0\|x'-x''\|\int_0^12\delta^{\alpha_0}dt\|x^*-x_0\|\\ &+\|x'-x''\|.\|x_0-x^*\|(K_0\|x''-x^*\|^{\alpha_0}+K_0\|x^*-x_0\|^{\alpha_0})\right]\\ &\leq &\frac{M}{2}\|x'-x''\|\left[\frac{K_0(\alpha_0+2)}{\alpha_0+1}\|x^*-x_0\|^{\alpha_0+1}+2K_0\delta^{\alpha_0}\|x_0-x^*\|\\ &+K_0\|x''-x^*\|^{\alpha_0}\|x_0-x^*\|+K_0\|x^*-x_0\|^{\alpha_0+1}\right]\\ &\leq &\frac{MK_0(5\alpha_0+6)\delta^{\alpha_0+1}}{2(\alpha_0+1)}\|x'-x''\|. \end{split}$$

Without loss of generality, we can choose δ such that $\delta < \left(\frac{2\lambda(\alpha_0+1)}{MK_0(5\alpha_0+6)}\right)^{\frac{1}{\alpha_0+1}}$, thus condition (b) of Lemma 2 is satisfied. Since both conditions of Lemma 2 are fulfilled, we can deduce that ϕ_0 has a fixed point $x_1 \in \mathbb{B}_{r_0}(x^*)$, that is

$$||x_1 - x^*|| \le c||x_0 - x^*||^{\alpha_0 + 2}.$$

Proceeding by induction, keeping $\eta_0 = x^*$ and setting $r_k = c \|x_k - x^*\|^{\alpha_0 + 2}$, we have the existence of a fixed point x_{k+1} for ϕ_k , which is an element of $\mathbb{B}_{r_k}(x^*)$. Then

$$||x_{k+1} - x^*|| \le c||x_k - x^*||^{\alpha_0 + 2}.$$
 (9)

In others words, (x_k) is superquadratically convergent to x^* then the proof of Theorem 1 is complete.

References

- I. K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl., 298(2004), 374–397.
- [2] I. K. Argyros, An improved convergence analysis of a superquadratic method for solving generalized equations, Rev. Colom. Mat., 40(2006), 65–73.
- [3] J. P. Aubin, Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res., 9(1984), 87–111.
- [4] J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
- [5] A. L. Dontchev, Local convergence of the newton method for generalized equations, C. R. Acad. Sc. Paris Sér. 1 Mat., 322(4)(1996), 327–329.
- [6] A. L. Dontchev and W. W. Hager, An inverse mapping theorem for set-valued maps, Proc. Amer. Math. Soc., 121(1994), 481–489.
- [7] A. L. Dontchev and R. T. Rockafellar, Characterizations of strong regularity for variational inequalities over polyhedral convex sets, SIAM J. Optim., 6(4)(1996), 1087–1105.
- [8] A. L. Dontchev and R. T. Rockafellar, Regularity and conditioning of solution mappings in variational analysis, Set-Valued Anal., 12(2004), 79–109.
- [9] A. L. Dontchev, M. Quincampoix and N. Zlateva, Aubin criterion for metric regularity, J. Convex Anal., 13(2006), 281–297.
- [10] M. C. Ferris and J. S. Pang, Engineering and economic applications of complementarity problems, SIAM Rev., 39(4)(1997), 669–713.

- [11] M. H. Geoffroy, S. Hilout and A. Piétrus, Acceleration of convergence in Dontchev's iterative method for solving variationnal inclusions, Serdica. Math. J., 22(2003), 385–398.
- [12] A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems, North Holland, Amsterdam, 1979.
- [13] C. Jean-Alexis, A cubic method without second ordre derivative for solving variational inclusions, C. R. Acad. Bulgare Sci., 59(12)(2006), 1213–1218.
- [14] C. Jean-Alexis and A. Piétrus, On the convergence of the Hummel-Seebeck's method for variational inclusions under mild differentiability conditions, Preprint.
- [15] M. Patriksson, Cost approximation algorithms, Optimization., 44(3)(1998), 199-217.
- [16] M. Patriksson, Sensitivity analysis of traffic equilibria, Trans. Scien., 38(3)(2004), 258-281.
- [17] A. Piétrus, Does Newton's method for set-valued maps converges uniformly in mild differentiability context, Rev. Colom. Mat., 32(2000), 49–56.
- [18] R. T. Rockafellar and R. Wets, Variational Analysis, Ser. Com. Stu. Math., 317, Springer, 1998.