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Abstract

For solving variational inclusions of the form 0 € f(z) + F(z), in [13, 14],
the authors proved the convergence of the following method inspired by Hummel-
Seebeck 0 € f(xx) + 2(Vf(zx) + Vf(¥kt1))(@kt1 — k) + F(xr41) where f is
a function whose second Fréchet derivative V2 f satisfies a Lipschitz condition
or a Holder condition. In this paper, we extend these results by assuming a
center-Holder condition on V2§,

1 Introduction

This paper is concerned with the problem of approximating a solution of variational
inclusions of the form

0€ f(z)+ F(z) (1)

where f is a function and F' is a set-valued map defined in two Banach spaces X and
Y. This kind of inclusion is an abstract model for various problems : variational prob-
lems, optimization and control theory, operations research, complementarity problems,
mathematical programming and engineering sciences [10, 15, 16]. For solving (1), the
following method has been introduced in [13],

0 fon) + 5 (VA0 + Vi) ) (orsn = 20) + Flowin), @)

where f is a function such that its second Fréchet derivative V2f satisfies a Lipschitz
condition. The existence of a sequence (xj) defined by (2) and its convergence to a
solution z* of (1) has been also proved.

Following this work, in [14], the authors extended these results by applying a Holder
condition on the second Fréchet derivative V2f. This condition reads as follows:

3K >0, ac(0,1], such that |[V2f(z) — V2f(y)|| < K|z —y||*, Vz,yeQ,
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where (2 is a neighborhood of x*. We can notice that when o = 1, we have the Lipschitz
condition for V2f.

In this study, we are interested in the convergence of the method (2) when V2f
satisfies a center-Holder assumption :

Jag € (0,1], suchthatV = € Q, ||[V2f(x) — VEf(2*)|| < Kol|lz — ™.

The inspiration for considering such a condition comes from [1, 2]. Let us remark that,
in some cases, the center-Holder condition holds whereas the Holder condition doesn’t.
Thus, this condition of center-Hé6lder is weaker than the Holder one hence allows us to
refine the result established in [13, 14].

Throughout, we denote by IB,(z) the closed ball centered at z with radius r and
by ||.|| all the norms. The distance from a point € X and a subset A C X is defined
as dist(x, A) = infyca{|lx — y||}.

Recall that a set-valued T' : X — 2Y is said to be M-pseudo-Lipschitz around
(x0,y0) € graphT if there exist constants a and b such that

e(T'(z1) NBa(yo), ['(w2)) < M|z — x2f, V1,72 € By(wo),

where the excess e from the set A to the set C'is defined by e(C, A) = sup, ¢ dist(z, A).

The pseudo-Lipschitz property has been introduced by J.-P. Aubin and one refers to
it as Aubin-continuity [3, 4, 18]. This property is equivalent to the metric regularity and
to linear openness, for more details, the reader could refer to [7, 8, 9]. This concept
is necessary for our study and often used for solving inclusions of the form (1), see
[5, 11, 17].

2 Convergence analysis

The main result is the following theorem:

THEOREM 1. Let z* be a solution of (1) and let f be a function whose second
Fréchet derivative V2f satisfies a center-Holder condition with a constant K, and
exponent ag on a neighborhood € of x*. If the set-valued map (f + F)~! is M-pseudo-
MKy(202 + 9ag + 8)

2(0[0 + 1)(0[0 + 2)
such that for every starting point z¢ € IBs(z*), there exists a sequence (zj) for (1),
defined by (2), which satisfies

Lipschitz around (0, z*) then for every ¢ > ,one can find § > 0

lors1 — ™| < cllag — 27| *0F2 (3)

that is, (x) is superquadratically convergent to x*.

In the proof of Theorem 1, we need two lemmas:

LEMMA 1. If f: X — Y is a function such that V f is Lipschitz then the following
are equivalent:

*

(i) The mapping (f + F)~! is pseudo-Lipschitz around (y*, z*).
(ii) The mapping [f(z*) + 3(Vf(z*) + Vf(-))(- — 2*) + F(-)]~* is pseudo-Lipschitz
around (y*, x*).
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The reader can consult the proof of this lemma in [13].

LEMMA 2. Let (X, p) be a complete metric space, let ¢ be a map from X into the
closed subsets of X, let g € X and let  and A be such that 0 < A < 1 and

(a) dist (no, ¢(n0)) < r(1—A),

(b) e(@(z1) NBr(n0), p(x2)) < A p(x1,x2), VI, x2 € By (o),

then ¢ has a fixed point in 1B, (). That is, there exists € IB,(19) such that € ¢(x).
If ¢ is single-valued, then x is the unique fixed point of ¢ in IB,.(1g).

This lemma is a generalization of a fixed-point theorem of Ioffe-Tikhomirov [12].
The reader can consult its proof in [6].

For a better understanding of Theorem 1, let us introduce a few notation. For
k € IN and x5, € X, we define the maps P : X — 2¥ and ¢, : X — 2% by

P) = 1)+ 3 (V1) + VI@) )=o)+ Fla) and oua) = PZ0)]
where
20(0) = (%) + 3 (V1) +95) ) o =a7) = fan) = 5 (VI 00) + 95(0) ) - ).

We remark that z; is a fixed point of ¢¢ if and only if if we have

0e f({EQ) + % (Vf(:to) + Vf($1)> (:El - {EQ) + F(:El)

Proceeding by induction, we show that the function ¢ has a fixed point z,y; in X.
Thus, we have the existence of a sequence (xy) defined by (2) which satisfies (3).

PROOF. The map (f + F)~! is M-pseudo-Lipschitz around (0, z*) then there exist
positive numbers a and b such that

e(P7Hy") NBa(2"), PH(y") < Mlly' =y, ¥y y" € By(0). (4)

Choose § > 0 such that

1 [Zb(ao + D(ao + 2)] o7

(o + 1)(ap +2) 707
coti/c’ | Ko(203 + 9 + 8) ’ [ )] } (5)

o< mm{“’ Ko(1803 + 57ag + 40

We apply Lemma 2 to the map ¢ with ng = * and r and X\ are numbers to be set.
Let us check that assertions (a) and (b) of this lemma are satisfied.

From the definition of the excess e, we have

dist (2%, go(2™)) < e(P~1(0) N Bs(z"), do(z")). (6)
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For all zyg € Bs(z*) such that zy ~z*, we have

IN

IN

IN

IN

IN

IN

1 Zo(z™)

1) — flao) (Vf<xo> n Vf@c*)) (=" — o)

1
3
17(2") ~ Flxo) = V(o) @" — 20) — 19 (o) &" — o)

2 (V1) Y f(a0) ~ V[ z)(w" —a0))a" — o)

I [ =02 @ + e = 0))a” = ao)de = 592 wo) o = w0’

gl =zl [ VRS (= aoitta” — o)~ [V ao)itta” - o)
I [ =090+t~ au) = 927(00) | (0" — ]

gl —aol? [ IVt + (= t)20) = T2 (a0 e

I [ =09 a0+t = a0) = T27) + F25") - VS ao)|

1 1
(@ = o) ?dt]| + 5 [l2" — $o||2/ IV2f(ta” + (1 = t)zo) — V2 f(2")dt
0
+V2f(2") = V2 f (o)

1
Kollz* — 3:0||2/ (1—1) [on +t(x" —xg) — || + ||z — 3:0||O‘“] dt
1 Con
sgHolle” ol [ 10 = a0 - o) + o — a1
1
Koz —3:0||0‘°+2/0 [(1 — gyt 4 —t] dt

1 1
sgHolle” —anl? [ a0 +1|a

KO (ao + 4) % o+2 KO (a0 + 2) * ap+2
SO0 et — —lz* -2z

a0 73| ol 2o 1 1) | ol
Ko(202 + 90 + 8

0205+ 900 +8)) 1o g,

2(040 + 1)(040 + 2)

Thanks to (5), we obtain Zy(z*) € IBy(0).
From this result and the definition of ¢y and (4), we get

dist (z*, ¢o(z*)) < e(P~1(0) N IBs(z*), P~ [Zo(x*)])
< MHZO(‘T*)H (7)
MKy(2a3 + 9ag + 8) 2" — ||+
2(ao + 1) (o + 2) 0 '

IN




190 Solving Variational Inclusions

Since ¢ > %, one can find A €]0, 1] such that ¢(1 —X) > %
Hence,
dist (2%, do(2")) < ¢(1 = A)[Ja™ — @ol|* . (8)

By setting r = 79 = ¢|la* — x0]|** 2, condition (a) of Lemma 2 is fulfilled. Let us
observe that from (5), 7o < § < a. For x € IBs(z*), using (5), we have

1
1@ = 1)+ 5 (V16 + V@) )@ o)
1
e = 5 (VHe0) + (@) ) (@ = a0
1
< @)~ f(@) - V@) - 2) - LV @) - )
1
HIF) — F(ao)  Vfao)(w — z0) — 592 (zo)(z — x0)’]
1
FLIVFa) - V(@) - Vf)(a - )] o ]
1
21 F(@) — V(zo) — V2 F(zo)a — o). — o]
1
< Kole® =l [ @=0)lo+1ta —a) = | 4 o7 ol ] a
0
1
+Kp|lx — 3:0||2/ (1—1%) [on +t(x —xo) — x¥||* 4 ||z* — 3:0||0‘“] dt
0
1 1
wgfolle” =l [0 0 = a4 o =l as
1 1
wgfolle = aolP [ [l + (0 00 =20 + " = o]
1
< Kollz* - 3:0||O‘°+2/ [(1 —t)otl 41— t] dt + Ko ||z — xo||?6
0
! KO * ao ! ag
/O 2(1 — t)dt + =2 2" — 2] +2/0 [(1 — ) 4 1]dt
1
+%||3:—3:0||250‘“/ 2dt
0
Ko(OZO +4) * o ag
< mH?f — xf|*0F? + Kod® |l — wol|?
K 2
s 0 — a4 Kod™ o - ol
< 18 + 57ag + 40 Kod®+2 < b,

2(040 + 2)(040 + 1)
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It follows that for all 2/, 2" € IB,,, (z*), we have

IN N IA

IN

IN

IN

IN

IN

e(do(a) NIBy, (%), do(z”))
e(go(z") NBs(z*), do("))
M||Zo(2') = Zo(")|

% [IIVf(x*) = Vi @o)lllle" = 2" + [V f (") = Vf(@")[|.[lxo — ]|

3 |94 = Vi) = a0 = an) o' o)
HIV (') = VI = VA" @ — ") oo - 27|
V(") = el ' =" oo - |

1
T |l =l [ 1920+ (= )20 - V1) + 9 4(0)
0

1
=V f(wo)lldt]la" — &"|| + ||2" — 2" /0 IV2f(ta’ + (1 = t)a")
=V f(a") + V2 f(a*) = V2 f(@")lldt.[|a" — a0
HIVA(2") = V2 f(a*) + V2 (") = V2 f(wo) |l |a" — a"[|.|lzo — ="

M * ! * * || o * «
7[Konac —aoll [ (e + (1 = t)z0 — 2" + a* — ol *0)ds
0

1
2" = "] + Koll" — " / ([t + (1 = )" —a~||*
0
Hllz® = 2"[*)dt]|a” — ol + [l&" — 2" [|zo — 27|
(V2 f(a") = V2F @)l + [V f(z") = V2f($o)ll)]

M e
7[1(0||gc*—gco||a°+ / [(1— )20 4 1]dt.||z" — 2"
0

1
—|—K0||3:/—33”||/ 26°°dt||x™ — zo|
0

+lz" =" lwo — 2™ (Kollz” — 2™||*° + Kolla™ — $0||a°)]

M

=1

KO (OZO + 2)

o1 e ol 4 2K o — 2|
0

+EKollz" — &*||*[lwo — ™| + Kolla™ — $0||a0+1]

MKy (5a0 + 6)§*T!
2(040 + 1)

=" = 2"
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1
aoTT
Without loss of generality, we can choose § such that § < (% , thus

condition (b) of Lemma 2 is satisfied. Since both conditions of Lemma 2 are fulfilled,
we can deduce that ¢g has a fixed point z; € IB,, (z*), that is
lz1 = 2| < ellwo — 27| *+2.

Proceeding by induction, keeping 19 = z* and setting 7, = c||zx —2*||*°*2, we have
the existence of a fixed point x1 for ¢k, which is an element of IB,, (z*). Then

leres — | < cllag — 2|02, (9)

In others words, (zr) is superquadratically convergent to * then the proof of Theorem
1 is complete.
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