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Abstract

In this paper, we study the uniqueness of entire functions and prove the fol-
lowing theorem. Let f(z) and g(z) be two transcendental entire functions, n, k
two positive integers with n > 5k + 8. If [f"(2)]® and [¢"(2)]* share 1 IM.
Then either f(z) = ci1e?®, g(z) = c2e™°*, where c¢1,c2 and ¢ are three constants
satisfying (—1)*(cic2)™(nc)®* = 1 or f(z) = tg(z) for a constant t such that
t" = 1.

1 Introduction and Results

By a meromorphic function we shall always mean a function that is meromorphic in
the open complex plane C'. It is assumed that the reader is familiar with the notations
of value distribution theory such as T'(r, f), m(r, f), N(r, f), N(r, f), S(r, f) and so on,
that can be found, for instance, in [6]. For a constant a, we define

O(a, f) =1 —1173ng.

f—
a)) the counting function for zeros of f —a with multiplicity < &, and by Ny (r,1/(f —
a)) the corresponding one for which multiplicity is not counted. Let N (r, 1/(f—a)) be
the counting function for zeros of f —a with multiplicity at least k and N (i, (r, 1/(f—a))
the corresponding one for which multiplicity is not counted. Set

1 — 1 — 1 — 1
e (T’f—a> _N(T’f—a>+N(2 (T’f—a>+m+N(k (“f—a) |

Let a be a complex number,we say f and g share the value a CM, if f —a and g —a
assume the same zeros with the same multiplicity. We say f and g share the value a
IM, if f — a and g — a assume the same zeros ignoring multiplicity.

Hayman and Clunie proved the following result.

THEOREM A ([7, 3]). Let f be a transcendental entire function, n > 1 a positive
integer. Then f™f’ = 1 has infinitely many solutions.

Let a be a finite complex number, and & a positive integer. We denote by Ny (r, 1/
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In 1997, Yang and Hua obtained a unicity theorem corresponding to the above
result.

THEOREM B ([11]). Let f(z) and g(z) be two nonconstant entire functions, n > 6
a positive integer. If f™ f” and g™ ¢’ share 1 CM, then either f(2) = ¢1e%*, g(z) = coe™ %,
where c1, ca, ¢ are three constants satisfying (cic2)"c? = —1, or f(2) = tg(z) for a
constant ¢ such that "™ = 1.

In 2000, Xu and Qiu replaced the CM shared value by an IM shared value in
Theorem B and proved the following result.

THEOREM C ([10]). Let f(z) and g(z) be two nonconstant entire functions, n > 12,
and let a # 0 be a finite constant. If f™f" and g"¢’ share a IM, then either f(z) =
cre™, g(z) = c2e*, where c1, c2, ¢ are three constants satisfying (cico)?™tc? = —a?
or f(z) =tg(z) for a constant ¢ such that "1 = 1.

REMARK: In fact, in [10], Xu and Qiu only considered the situation that f and
g were transcendental entire functions, and ignored the situation that f and g were
polynomials. For more related results, the reader can refer to [8] or [1].

3

Chen [2] and Wang [9] extended Theorem A by proving the following theorem.

THEOREM D (]2, 9]). Let f be a transcendental function, n, k two positive integers
with 7 > k + 1. Then (f*)®) = 1 has infinitely many solutions.

Naturally we ask by Theorem A and Theorem B whether there exists a correspond-
ing unicity theorem to Theorem D ? In 2002, Fang gave a positive answer to the above
question and proved the following result.

THEOREM E ([4]). Let f(z) and g(z) be two nonconstant entire functions, n,k
two positive integers with n > 2k 4+ 4. If [f"(2)]*) and [¢"(z)]**) share 1 CM. Then
either f(z) = c1e?, g(z) = cae” %, where ¢, c2 and c¢ are three constants satisfying
(—=1)¥(c1c2)™(nc)?* =1 or f(z) = tg(z) for a constant ¢ such that " = 1.

It is natural to ask the following question: is it possible to relax the nature of
sharing value from CM to IM in Theorem E ? In this paper, we answer the question
by proving the following theorem.

THEOREM 1. Let f(z) and g(z) be two transcendental entire functions, n, k
two positive integers with n > 5k + 8. If [f"(2)]*®) and [¢"(2)]*) share 1 IM. Then
either f(z) = c1e?, g(z) = ce” %, where ¢, c2 and c¢ are three constants satisfying
(—=1)¥(c1c2)™(nc)?* =1 or f(z) = tg(z) for a constant ¢ such that " = 1.

REMARK: When k = 1 in Theorem 1, it is Theorem B. So Theorem 1 is also an
improvement of Theorem B.

2 Some Lemmas

The following Lemmas are needed in the proof of Theorem 1.

LEMMA 1 ([6, 12]). Let f(z) be a transcendental entire function, k a positive
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integer, and let ¢ be a nonzero finite complex number. Then

1 1 1
N (T,}) + N (T,m> - N (T, m) +S(r, f)

1 — 1 1
Nit1 (T,?>+N(T,m> - No (ﬁm)‘i‘s(ﬁf),

where Ny (r, j(,c+l)) is the counting function which only counts those points such that
FEFD =0 but f(f*) —¢) #0.

LEMMA 2 ([6, 12]). Let f(z) be a transcendental meromorphic function, and let
a1(z), az(z) be two meromorphic functions such that T'(r,a;) = S(r, ), = 1,2. Then

1 — 1
f_al>+N<r,f_a2>+S(r,f).

LEMMA 3 ([13]). Let f and g be two nonconstant meromorphic functions such
that f and g share the value 1 IM. Then

— 1

Nl(hf—1>

Ne (T’gi1>
1

where N (r, +—7) denotes the counting function for 1-points of both f and g about

which f has larger multiplicity than g, with multiplicity being not counted.

LEMMA 4 ([14]). Let f be a nonconstant meromorphic function, k be a positive
integer, then

T(r, f)

IN

IN

T@ﬁsﬁmﬁ+ﬁQ,

IN

~ (T, %) + N, )+ S(r, f),

IN

N (r, é) +N(r.g) +5(r.9),

N, (T, ﬁ) < Nptk (T, %) +kN(r, f) +S(r, f),

where N, (r, j(%)) denotes the counting function of the zeros of f(*) where a zero of
multiplicity m is counted m times if m < p and p times if m > p. Clearly N(r, j(%)) =
Ny (r, j(%))

LEMA 5. Let F(z) and G(z) be two transcendental entire functions such that
0(0,F) > 2£8,0(0,G) > 35, If F(2)™® and G(2)*) share the value 1 IM, then
either F(2)®G(2)®) =1 or F = G.

PROOF. Set

Fk+2) Fl+1)  qk+2) Gk+1)
¢ = FkD) ~ Rk —1 q®+D + 2G(k) 1

Suppose that ® # 0. If zp is a common simple zero of F(z)*) — 1 and G*) — 1, by a
simple computation, we know that zy is a zero of ®. Thus we have

N (T, ﬁ) <N (T, é) <T(r,®)+0(1) < N(r, @)+ S(r, F) + S(r, G) . (1)
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By our assumption, we obtain

— 1 — 1 — 1 — 1
N(T,(I)) S N(T,F>+N(T,5>+NL(T,W>+NL(T,W>
1 1
+N0 (T,m) +N0 (T, m) . (2)

Note that

_l’_
< 1 N ! N
= hEm o) TN\ Em o) T G 1
1) R — 1
< N ( 1)+ Vo (r gy ) + TG+ 00) Q

By Lemma 1, we have

T(r,F) < (k+1)N (T,

— 1 1
)—FN(T,m)—NO (T,m)‘i‘S(T,F) (4)

1 1
) (s ) 0 (gt ) 50009
Thus we deduce from (3), (4) and (5) that

QI ==

T(r,G) < (k+1)N (T,

—( 1 —( 1 1 1
— 1 1
+NL (T,m) +T(T,G>—N0 (T,m)
1
_NO (T, m) +S(T, F)+S(T, G) (6)
So by Lemma 3 and (1), (2) and (6), we have

T(r,F) < (k+2)N (r, %) + (k+2)N (r, é) +2Np, (r, ﬁ)

— 1
+NL (T,m)—FS(T,F)‘FS(T,G)

(k+2)N (r, %) + (k+2)N (r, é) + 2N (r, ﬁ)

+N( G(k)> +S(r, F) +S(r,G). (7)

IN

By Lemma 4, we have

O%) < Nyt (r%> +S(r, F) < (k+ IW( ;) +8(rF).  (8)

2
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So by (7) and (8), we have
T(r, F) < (3k + HN (r, %) +(2k+3)N (r, é) 80 F)+S(nG). (9
Similarly we have
T(r,G) < (3% + )N (r, é) +(2k+3)N (r, %) LS F)+S(nG).  (10)
So by (9) and (10), we have
T(r,F)+T(r,G) < (5k+7)N (r, %) + (5k + )N (r, é) +S(r,F)+S(r,G).

So
[(5k+T7)O(0, F)—5k—6]T(r, F)+[(5k+7)0(0,G) =5k —6]T(r,G) < S(r, F)+ S(r,G) .
Thus we obtain a contradiction from the condition. Hence we have ® = 0, that is

F(k+2) Fr(k+1) G(k+2) G(k+1)
FE+) TRk —1 T QG+l 2G(k) 1

By solving this we obtain

1 bG®4a—b
F)—1 gk -1

where a, b are two constants. Next we consider three cases.
Case 1 b # 0, a = b. So we obtain that G*) # 0. Thus there exists an entire
function h such that G*) = ¢ and

1 1
(k) _ - _ -_—h

If b= —1, then F®GH®) =1. If b # —1, then F®) — (1 + }) = —fe~" # 0. And thus
we deduce from Lemma 1 that

T(r, F) < (5 + DN (r, ) + S0, F) < (k + 1)(1 = 600, F)T(r, F) + (s, F)

that is
[(k+1)0(0,F)— KT, F)<S(rF).

Hence we deduce a contradiction from the assumption.
Case 2. b # 0, a # b. Then we have G*) + %b # 0. From Lemma 1 we deduce
— 1
T(r,G)<(k+1)N (T, 5) +S(r,G).

By using the argument as in Case 1, we get a contradiction.
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Case 3. b =0, a # 0. Then we obtain
1

F=-G+P(2),
a

where P(z) is a polynomial. If P(z) # 0, then by Lemma 2 we have

N (r, %) +N (r, Fi—P> +8(r,F)=N (r, %) +N (r, é) +S(r, F)
< [1-00,MTr F)+[1-060,G)]T(r,G)+ S(r, F).

T(r, F)

IN

Obviously we have T'(r, F') = T(r,G) + S(r, F'). Hence we get
Thus we deduce that T'(r, F) < S(r, F), a contradiction. Therefore we deduce that
P(z) =0, that is
1
F=-G.
a
If a # 1, then by F®) G®*) share the value 1 IM, we deduce that G*) # 1. Next we

can deduce a contradiction as in Case 2. Thus we get a = 1, that is F = G. The proof
of the Lemma is complete.

LEMMA 6 ([5]). Let f(z) be a nonconstant entire function, and let ¥ > 2 be a
positive integer. If ff*) £ 0, then f = e***°, where a # 0, b are constants.

3 Proof of Theorem 1

We only prove the case of k > 2 from Theorem B. Let F' = ", G = g". Then by the
assumptions we obtain

n—1 5k + 6
F) > - 11
o0, F) > 151D (1)
n—1 5k + 6
00,G) > . 12
0,6) > n >5k+7 (12)

Considering F®*) = [f*](®) G*) = [¢"](*)| we obtain that F(*), G*) share the value 1
IM. Hence by (11), (12) and Lemma 5 we deduce that F(2)*®)G(2)*) =1 or F = G.

Next we consider two cases.
Case 1. F(2)®G(2)*) =1, that is

MO =1,

Obviously, f # 0 and g # 0. In fact, suppose that f has a zero zy5. Then zj is a zero
of [f*]™). Thus zp is a pole of [g"]*), which contradicts that g is an entire function.
Hence f # 0, g # 0. On the other hand, we get by f, g are entire functions that

(1% £ 0,[g"™ #£0.
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cz

Then by Lemma 6, we get that f = c1e%*, g = coe™ %, where c¢1, c2 and c are three

constants satisfying (—1)*(c1c2)"(ne)?* = 1.
Case 2. F = @G, that is f* = ¢". Hence we get f = tg, where t is a constant
satisfying t" = 1. Thus Theorem 1 is proved.

Acknowledgment. The author thanks the anonymous reviewer for his helpful
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