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Abstract

We describe a construction of symmetric designs with parameters (784,378,182)
and (900,435,210) having an automorphism group isomorphic to Frob29·14 × Z13

and Frob31·15 ×Z14, respectively. The derived designs of the constructed designs,
with respect to the fixed block, are 1-rotational.

1 Introduction

A 2-(v, k, λ) design is a finite incidence structure (P,B, I), where P and B are disjoint
sets and I ⊆ P × B, with the following properties:

1. |P| = v;

2. every element of B is incident with exactly k elements of P;

3. every pair of distinct elements of P is incident with exactly λ elements of B.

The elements of the set P are called points and the elements of the set B are called
blocks. If |P| = |B| = v and 2 ≤ k ≤ v − 2, then a 2-(v, k, λ) design is called a
symmetric design.

Given two designs D1 = (P1,B1, I1) and D2 = (P2,B2, I2), an isomorphism from D1

onto D2 is a bijection which maps points onto points and blocks onto blocks preserving
the incidence relation. An isomorphism from a symmetric design D onto itself is called
an automorphism of D. The set of all automorphisms of the design D forms a group;
it is called the full automorphism group of D and denoted by AutD.

Let D = (P,B, I) be a symmetric (v, k, λ) design and G a subgroup of AutD. The
action of G produces the same number of point and block orbits (see [9, Theorem 3.3,
pp. 79]). We denote that number by t, the point orbits by P1, . . . ,Pt, the block orbits
by B1, . . . ,Bt, and put |Pr| = ωr and |Bi| = Ωi. We shall denote the points of the
orbit Pr by r0, . . . , rωr−1, (i.e. Pr = {r0, . . . , rωr−1}). Further, we denote by γir the
number of points of Pr which are incident with a representative of the block orbit Bi.
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The numbers γir are independent of the choice of the representative of the block orbit
Bi. For those numbers the following equalities hold (see [8]):

t∑

r=1

γir = k, (1)

t∑

r=1

Ωj

ωr
γirγjr = λΩj + δij(k − λ). (2)

DEFINITION 1. Let (D) be a symmetric (v, k, λ) design and G ≤ Aut D. Further,
let P1, . . . ,Pt be the point orbits and B1, . . . ,Bt the block orbits with respect to G,
and let ω1, . . . , ωt and Ω1, . . . , Ωt be the respective orbit lengths. We call (P1, . . . ,Pt)
and (B1, . . . ,Bt) the orbit distributions, and (ω1, . . . , ωt) and (Ω1, . . . , Ωt) the orbit
size distributions for the design and the group G. A (t × t)-matrix (γir) with entries
satisfying conditions (1) and (2) is called an orbit structure for the parameters (v, k, λ)
and orbit distributions (P1, . . . ,Pt) and (B1, . . . ,Bt).

The first step – when constructing designs for given parameters and orbit distribu-
tions – is to find all compatible orbit structures (γir). The next step, called indexing,
consists in determining exactly which points from the point orbit Pr are incident with
a chosen representative of the block orbit Bi for each number γir . Because of the large
number of possibilities, it is often necessary to involve a computer in both steps of the
construction.

DEFINITION 2. The set of all indices of points of the orbit Pr which are incident
with a fixed representative of the block orbit Bi is called the index set for the position
(i, r) of the orbit structure and the given representative.

A Hadamard matrix of order m is an (m × m) matrix H = (hi,j), hi,j ∈ {−1, 1},
satisfying HHT = HT H = mIm, where Im is an (m × m) identity matrix. Two
Hadamard matrices are equivalent if one can be transformed into the other by a series
of row or column permutations and negations. A Hadamard matrix is normalized if
all entries in its first row and column are 1. If we delete the first row and column of a
normalized Hadamard matrix of order m and replace −1 by 0, we obtain the incidence
matrix of a symmetric (m−1, m

2
−1, m

4
−1) design (see [9]). From any symmetric design

with parameters (m − 1, m
2 − 1, m

4 − 1) we my in turn recover a normalized Hadamard
matrix. Such a symmetric design is called a Hadamard design. The complement od
such a design is a symmetric (m − 1, m

2 , m
4 ) design.

A Hadamard matrix is regular if the row and column sums are constant. It is well
known that the existence of a symmetric design with parameters (4u2, 2u2 − u, u2− u)
is equivalent to the existence of a regular Hadamard matrix of order 4u2 (see [15,
Theorem 1.4 pp. 280]). Such symmetric designs are called Menon designs.

Designs find their application in various fields, including coding theory, threshold
schemes, visual cryptography, and design of experiments (see e.g. [1], [2], [12], and
[13]). Hadamard matrices also have wide range of application (see e.g. [11]), which
includes construction of maximal codes, achieving the Plotkin bound.

An (n, M, d) code is a binary code C of length n, minimum distance d, and size
M = |C|. Let A be the incidence matrix of a symmetric Hadamard (m − 1, m

2 , m
4 )

design. Then (see [13, Examples 1.160 and Theorem 1.161 pp. 698]):
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1. The rows of A and the zero vector form a maximal (m − 1, m, m
2 ) code Cm.

2. The words of Cm together with their complements, obtained by replacing 0 by 1
and vice versa, form a maximal (m − 1, 2m, m

2
− 1) code.

3. The words of Cm beginning with zero after deleting the first coordinate form a
maximal (m − 2, m

2 , m
2 ) code.

Thus, from symmetric (784,378,182) designs we can construct maximal (783,784,392),
(783,1568,391), and (782,392,392) codes, which could correct up to 195 errors. In the
same way from symmetric (900,435,210) designs one constructs maximal (899,900,450),
(899,1800,449), and (898,450,450) codes, which could correct up to 224 errors.

Further, the code designed from an (m × m) Hadamard matrix H in the following
way: [

H
−H

]

has the minimum distance equal to m
2

, and therefore has maximal error correcting
capability for a given length of a codeword (see [11]). Symmetric (784,378,182) designs
lead to (784,1568,392) codes, which could correct up to 195 errors. Similarly, symmetric
(900,435,210) designs produce (900,1800,450) codes, which correct up to 224 errors.

For each of Menon designs described in this paper we compute 2-rank of its incidence
matrix, i.e., the dimension of the binary linear code spanned by the incidence matrix.

It is known that Menon designs with parameters (4n2, 2n2−n, n2−n) exist whenever
2n − 1 and 2n + 1 are both prime powers (see [6]). Therefore, Menon designs with
parameters (784,378,182) and (900,435,210) have been known to exist. However, only
a few examples of designs with these parameters have been constructed so far.

2 Orbit Structures

For v ∈ N we denote by jv the all-one vector of dimension v, by 0v the zero-vector of
dimension v, and by Jv the all-one matrix of dimension (v × v).

LEMMA 1. Let n be a positive integer. The matrix

OS =




1 (2n + 1)jT
n−1 0 0T

n−1

jn−1 (n + 1)Jn−1 − nIn−1 njn−1 nJn−1

0 njT
n−1 1 (n + 1)jT

n−1

0n−1 nJn−1 (n + 1)jn−1 (n + 1)Jn−1 − nIn−1




is an orbit structure for the parameters (4n2, 2n2 − n, n2 − n) and the orbit size distri-
bution (1, 2n + 1, 2n + 1, . . . , 2n + 1).

PROOF. The matrix OS satisfies equalities (1) and (2).

In [10] M.-O. Pavčević used orbit matrices of the type OS when 2n + 1 is a prime.
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3 Symmetric (784,378,182) Designs

To our knowledge, none symmetric (784,378,182) design has been constructed and
studied so far. In our construction of symmetric (784,378,182) designs we use the
group

G1 = 〈ρ, σ, τ | ρ29 = 1, σ14 = 1, τ13 = 1, ρσ = ρ4, ρτ = ρ, στ = σ〉.

isomorphic to Frob29·14×Z13. We shall assume that an automorphism group H1 ≤ G1

isomorphic to Frob29·14 acts on the symmetric (784,378,182) designs to be constructed
with one fixed points (and blocks), and 27 orbits of size 29. That means that the
permutation of order 14 has precisely 28 fixed points (and 28 fixed blocks). Orbit
structure of the type OS, for n = 14, corresponds to such action of H1 on a symmetric
(784,378,182) design. We shall proceed with indexing of the orbit structure OS by the
method described in [7], having in mind the action of τ on the H1-orbits, as described
in [3].

We denote the points of the design by 10, 2i, . . . , 28i, i = 0, 1, . . . , 28, and put G1 =
〈ρ, σ, τ 〉, where the generators for G1 are permutations defined as follows:

ρ = (10)(I0I1 . . . I28), I = 2, . . . , 28,

σ = (10)(K0)(K1K4K16K6K24K9K7K28K25K13K23K5K20K22)
(K2K8K3K12K19K18K14K27K21K26K17K10K11K15), K = 2, . . . , 28,

τ = (10)(2i3i4i5i6i7i8i9i10i11i12i13i14i)(15i)
(16i17i18i19i20i21i22i23i24i25i26i27i28i), i = 0, 1, . . . , 28.

As representatives for the block orbits we chose blocks fixed by 〈σ〉. Therefore, the
index sets which could occur in the designs are among the following:
0 = {0}, 1 = {1, 4, 5, 6,7,9, 13, 16, 20, 22, 23,24,25,28},
2 = {2, 3, 8, 10,11,12,14,15,17,18,19,21,26,27},
3 = {0, 1, 4, 5, 6, 7,9,13,16,20,22,23,24,25,28},
4 = {0, 2, 3, 8, 10, 11, 12, 14, 15,17,18,19,21,26,27}.

The indexing process of the orbit structure OS leads to three designs, denoted by
D1

1, D1
2, and D1

3. These designs are self-dual. The designs D1
1, D1

2, and D1
3 have the

full automorphism group of order 15834, isomorphic to Frob29·14×Frob13·3, and their
2-rank is 366. A computer program by Vladimir D. Tonchev [14] computes the order
as well as generators of the full automorphism group for each of the designs found.
Another computer program by V. D. Tonchev [14] computes 2-rank of the designs.
The group structures have been determined with the help of GAP [5].

We write down base blocks for the designs D1
1, D1

2 and D1
3, in terms of the index

sets defined above. Since indexing the fixed part of an orbit stucture is a trivial task,
we write down base blocks omitting the fixed part. It is sufficient to write down
representatives of the 2nd, 15th, and 16th H1-orbit, since the other H1-orbits could be
obtained as their 〈τ 〉-images.

D1
1

033343344344411112122121222
222222222222204444444444444
211121211212230444344334333
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D1
2

033343344344411112221212212
222222222222204444444444444
212112121112230444344334333

D1
3

033343344344411121212112222
222222222222204444444444444
211112212121230444344334333

4 Symmetric (900,435,210) Design

Six symmetric designs with parameters (900,435,210) are described in [4]. Although
symmetric designs with parameters (900,435,210) have been known to exist for a long
time, as far as we know these are the only known symmetric (900,435,210) designs.

Let us describe a construction of a symmetric (900,435,210) design using the group

G2 = 〈ρ, σ, τ | ρ31 = 1, σ15 = 1, τ14 = 1, ρσ = ρ7, ρτ = ρ, στ = σ〉

isomorphic to Frob31·15 × Z14. We denote the points of the design by 10, 2i, . . . , 30i,
i = 0, 1, . . . , 30, and put G2 = 〈ρ, σ, τ 〉, where the generators for G2 are permutations
defined as follows:

ρ = (10)(I0I1 . . . I30), I = 2, . . . , 30,

σ = (10)(K0)(K1K7K18K2K14K5K4K28K10K8K25K20K16K19K9)
(K3K21K23K6K11K15K12K22K30K24K13K29K17K26K27), K = 2, . . . , 30,

τ = (10)(2i3i4i5i6i7i8i9i10i11i12i13i14i15i)(16i)
(17i18i19i20i21i22i23i24i25i26i27i28i29i30i), i = 0, 1, . . ., 30.

Orbit structure OS led to one design, denoted by D2
1. Base blocks of D2

1, with
respect to the group G2 in terms of index sets are given below:

D2
1

03344343434433111112122221122
11111111111111033333333333333
12211222212111304433434343344

The index sets which occur in the designs are:
0 = {0}, 1 = {1, 2, 4, 5,7,8, 9, 10, 14, 16, 18, 19, 20, 25, 28},
2 = {3, 6, 11, 12,13,15,17,21,22,23,24, 26, 27, 29, 30},
3 = {0, 1, 2, 4, 5, 7,8,9,10,14,16,18,19,20,25,28},
4 = {0, 3, 6, 11,12,13,15,17,21,22,23,24,26,27,29,30}.

The design D2
1 is self-dual, and the full automorphism group of D2

1 is isomorphic
to Frob31·15 × Z14. Six symmetric designs with parameters (900,435,210) described in
[4] have the full automorphism group isomorphic to Frob29·14 × Z13, so the design D2

1
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can not be isomorphic to any of these designs. It is known that p−rank of a symmetric
(v, k, λ) design is v if p does not divide k(k − λ) (see [13, Theorem 1.86, pp. 686]).
Thus, 2-rank of the design D2

1 is 900.

Let D be a symmetric (v, k, λ) design and let x be a block of D. Remove x and all
points that do not belong to x from other blocks. The result is a 2-(k, λ, λ− 1) design,
a derived design of D with respect to the block x.

A 2-(v, k, λ) design D is called k−rotational if some automorphism of D has one
fixed point and k cycles each of length v−1

k . The derived designs of D1
1, D1

2, and D1
3

with respect to the fixed block are 1-rotational 2-(378,182,181) designs. Similarly, the
derived design of D2

1 with respect to the fixed block is a 1-rotational 2-(435,210,209)
design.

5 Hadamard Designs with Parameters (783,391,195)

and (899,449,224)

The designs D1
1, D1

2 and D1
3, by normalizing the incidence matrices and then deleting

the first row and column, produce Hadamard designs with parameters (783,391,195)
having the full automorphism groups of order 15834, 15834, and 855036, respectively.
The 2-rank of each of these three designs equals 365. The automorphism group of
order 855036 possesses the subgroup of order 783, isomorphic to E27 ×Z29, which acts
regularly on the Hadamard design obtained from D1

3. The Hadamard design obtained
from the design D1

3, by normalizing the incidence matrix and then deleting the first row
and column, is the development of a twin prime power difference set (see [2, Theorem
8.2 pp. 354]).

Normalizing the incidence matrix of D2
1 and then deleting the first row and col-

umn leads us to the Hadamard design with parameters (899,449,224), which is the
development of a twin prime power difference set. This Hadamard design has the full
automorphism group of order 377580. The derived subgroup of AutD2

1 is the cyclic
group of order 899, which acts regularly on the design. Clearly, the 2-rank of this
design is 899.

References

[1] E. F. Assmus Jr., J. D. Key, Designs and Their Codes, Cambridge University
Press, Cambridge, 1992.

[2] T. Beth, D. Jungnickel, H. Lenz, Design Theory, 2nd ed., Cambridge University
Press, Cambridge, 1999.
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