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Abstract

We consider a totally positive generalized Vandermonde matrix and obtain by
induction its unique LU factorization avoiding Schur functions. As by-products,
we get a recursive formula for the determinant and the inverse of a totally positive
generalized Vandermonde matrix and express any Schur function in an explicit
form.

1 Introduction

Let

G{n;a1,a2,··· ,an} =




xa1
1 xa2

1 · · · xan

1

xa1
2 xa2

2 · · · xan

2
...

...
. . .

...
xa1

n xa2
n · · · xan

n




be a totally positive (TP) generalized Vandermonde matrix [1, p.142], where 0 ≤ a1 <
a2 < · · · < an are integers and 0 < x1 < x2 < · · · < xn. In connection with Schur
functions we define the partition λ associated with G as the nonincreasing sequence of
nonnegative integers

λ = (λ1, λ2, · · · , λn) = (an − (n − 1), an−1 − (n − 2), · · · , a1),

and get
G{n;a1,a2,··· ,an} = [xj−1+λn−j+1

i ]1≤i,j≤n,
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and Schur function associated to λ is defined as

sλ(x1, x2, · · · , xn) =
det G{n;a1,a2,··· ,an}

det G{n;0,1,··· ,n−1}
.

In a recent paper [1], J. Demmel and P. Koev performed accurate and efficient
matrix computations of Gn := G{n;a1,a2,··· ,an}. Their results, among others, are an
explicit bidiagonal decompositions of G−1

n and an LDU decomposition of Gn which
involves Schur functions.

In a previous paper [2], using only mathematical induction, we succeeded to provide
the unique LU factorization of a special case of generalized Vandermonde matrices,
and this prompts us to do the same thing with Gn. Our main result presents an
explicit LU factorization not involving Schur functions. As by-products, we calculate
the determinant, the inverse of Gn and the Schur functions sλ(x1, x2, · · · , xn).

2 The LU factorization of Gn and applications

An LU factorization is to express a matrix as a product of a lower triangular matrix
L and an upper triangular matrix U . If L is a lower triangular matrix with unit main
diagonal and U is an upper triangular matrix, the LU factorization is unique. Our
main aim in this note is to give the explicit unique LU factorization of Gn without
involving Schur functions; Demmel and Koev provided in [1], Section 3, an explicit
bidiagonal decomposition of G−1

n which involves Schur functions. Our main result is
the following theorem whose proof occupies almost the whole Section 2 and is carried
out using delicate induction arguments.

THEOREM 2.1. Gn can be factorized as Gn = LnUn, where Ln = [Ln(i, j)] is
a lower triangular matrix with unit main diagonal and Un = [Un(i, j)] is an upper
triangular matrix, whose entries are defined as follows:

Ln(i, j) =





1, i = j;
0, i < j;
( xi

x1
)a1 , j = 1, i ≥ 2;

( xi

xj
)a1

S{xj →xi}(Aj )

Aj
, i ≥ j + 1, j ≥ 2.

;

and

Un(i, j) =





x
aj

1 , i = 1;
0, i > j;
xa1

i Bi, i = j ≥ 2;
xa1

i S{ai→aj}(Bi), j ≥ i + 1, i ≥ 2.

;

where Ai, Bj, and the notations S{xk−1→xk}, S{ak−1→ak} are defined recursively for
i, j ≥ 2:

A2 = B2 = xa2−a1
2 − xa2−a1

1 ;

Ak = {S{ak−1→ak}
{xk−1→xk}(Ak−1)}Ak−1 − S{xk−1→xk}(Ak−1)S{ak−1→ak}(Ak−1), k ≥ 3;
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Bk = S
{ak−1→ak}
{xk−1→xk}(Bk−1) − {S{ak−1→ak}(Bk−1)}

(
S{xk−1→xk}(Ak−1)

Ak−1

)
, k ≥ 3;

S{xk−1→xk}(Ak−1) := xk substitutes xk−1 in Ak−1;

S{ak−1→ak}(Ak−1) := ak substitutes ak−1 in Ak−1.

PROOF. We use mathematical induction on n, the size of Gn. The case where n = 2
follows from

L2U2 =
[

1 0
(x2

x1
)a1 1

] [
xa1

1 xa2
1

0 xa1
2 (xa2−a1

2 − xa2−a1
1 )

]
=

[
xa1

1 xa2
1

xa1
2 xa2

2

]
= G2.

Assume Gk = LkUk holds, we want to prove Gk+1 = Lk+1Lk+1. By induction hypoth-
esis, we know that

Gk(k, l) =
l∑

m=1

Lk(k, m)Uk(m, l), 1 ≤ l ≤ k, (1)

Gk(l, k) =
l∑

m=1

Lk(l, m)Uk(m, k), 1 ≤ l ≤ k. (2)

It is sufficient to show that

Gk+1(k + 1, l) =
k+1∑

m=1

Lk+1(k + 1, m)Uk+1(m, l), 1 ≤ l ≤ k,

and

Gk+1(l, k + 1) =
k+1∑

m=1

Lk+1(l, m)Uk+1(m, k + 1), 1 ≤ l ≤ k + 1.

Firstly, we find that

k+1∑

m=1

Lk+1(k + 1, m)Uk+1(m, 1) = Lk+1(k + 1, 1)Uk+1(1, 1)

=
(

xk+1

x1

)a1

× xa1
1

= xa1
k+1

= Gk+1(k + 1, 1),
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and by (1), we get
k∑

m=1

Lk(k, m)Uk(m, l) =
l∑

m=1

Lk(k, m)Uk(m, l)

=
(

xk

x1

)a1

× xal

1

+
l∑

m=2

(
xk

xm

)a1 S{xm→xk}(Am)
Am

× xa1
m S{am→al}(Bm)

= Gk(k, l)
= xal

k ,

for 2 ≤ l ≤ k − 1, so
k+1∑

m=1

Lk+1(k + 1, m)Uk+1(m, l)

=
l∑

m=1

Lk+1(k + 1, m)Uk+1(m, l)

=
(

xk+1

x1

)a1

× xal

1 +
l∑

m=2

(
xk+1

xm

)a1 S{xm→xk+1}(Am)
Am

× xa1
m S{am→al}(Bm)

= xal

k+1

= Gk+1(k + 1, l),

for 2 ≤ l ≤ k − 1. Next, we have
k+1∑

m=1

Lk+1(1, m)Uk+1(m, k + 1) = Lk+1(1, 1)Uk+1(1, k + 1)

= 1 × x
ak+1
1

= x
ak+1
1

= Gk+1(1, k + 1),

and by (2), we can get
k∑

m=1

Lk(l, m)Uk(m, k)

=
l∑

m=1

Lk(l, m)Uk(m, k)

= (
xl

x1
)a1 × xak

1 +
l∑

m=2

(
xl

xm
)a1

S{xm→xl}(Am)
Am

× xa1
m S{am→ak}(Bm)

= Gk(l, k)
= xak

l ,
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for 2 ≤ l ≤ k − 1, so

k+1∑

m=1

Lk+1(l, m)Uk+1(m, k + 1)

=
l∑

m=1

Lk+1(l, m)Uk+1(m, k + 1)

=
(

xl

x1

)a1

× x
ak+1
1 +

l∑

m=2

(
xl

xm

)a1 S{xm→xl}(Am)
Am

× xa1
m S{am→ak+1}(Bm)

= x
ak+1
l = Gk+1(l, k + 1),

for 2 ≤ l ≤ k − 1; let l = k in (2), we establish the following equation:

xak

k =
k∑

m=1

Lk(k, m)Uk(m, k)

=
(

xk

x1

)a1

× xak

1 +
k−1∑

m=2

(
xk

xm

)a1 S{xm→xk}(Am)
Am

× xa1
m S{am→ak}(Bm)

+1 × xa1
k Bk. (3)

Altogether, we conclude that

k+1∑

m=1

Lk+1(k, m)Uk+1(m, k + 1)

=
k∑

m=1

Lk+1(k, m)Uk+1(m, k + 1)

=
(

xk

x1

)a1

× x
ak+1
1 +

k−1∑

m=2

(
xk

xm

)a1 S{xm→xk}(Am)
Am

× xa1
m S{am→ak+1}(Bm)

+1 × xa1
k × S{ak→ak+1}Bk

= x
ak+1
k

= Gk+1(k, k + 1).

On the other hand, we will prove that

xak

k+1 =
(

xk+1

x1

)a1

× xak

1 +
k−1∑

m=2

(
xk+1

xm

)a1 S{xm→xk+1}(Am)
Am

× xa1
m S{am→ak}(Bm)

+xa1
k+1

(
S{xk→xk+1}(Ak)

Ak

)
× Bk.

In fact, application of S{xk→xk+1} on both sides of (3) results in the latter equation
except the last term being 1 × S{xk→xk+1}(x

a1
k Bk). Thus the validity of the latter
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equation is based on the fact that

Ak × S{xk→xk+1}(Bk) = Bk × S{xk→xk+1}(Ak)

which can be proved by induction on k as follows. The case k = 2 is trivial, since
A2 = B2. Assume the induction hypothesis

Ak × S{xk→xk+1}(Bk) = Bk × S{xk→xk+1}(Ak)

holds. Then by applying S
{ak→ak+1}
{xk→xk+1}S{xk+1→xk+2}, S{ak→ak+1} and S

{ak→ak+1}
{xk+1→xk+2} to

both sides of the above equation respectively, we obtain

S
{ak→ak+1}
{xk→xk+1}(Ak) × S

{ak→ak+1}
{xk→xk+2}(Bk) = S

{ak→ak+1}
{xk→xk+1}(Bk) × S

{ak→ak+1}
{xk→xk+2}(Ak); (4)

S
{ak→ak+1}
{xk→xk+1}(Ak) × S{ak→ak+1}(Bk) = S

{ak→ak+1}
{xk→xk+1}(Bk) × S{ak→ak+1}(Ak); (5)

S{ak→ak+1}(Ak) × S
{ak→ak+1}
{xk→xk+2}(Bk) = S{ak→ak+1}(Bk) × S

{ak→ak+1}
{xk→xk+2}(Ak). (6)

Now we prove the induction step

Ak+1 × S{xk+1→xk+2}(Bk+1) = Bk+1 × S{xk+1→xk+2}(Ak+1),

which, by using the definitions of Ak+1 and Bk+1, becomes

({S{ak→ak+1}
{xk→xk+1}(Ak)}Ak − S{xk→xk+1}(Ak)S{ak→ak+1}(Ak))

×S{xk+1→xk+2}

(
S
{ak→ak+1}
{xk→xk+1}(Bk) − {S{ak→ak+1}(Bk)}

(
S{xk→xk+1}(Ak)

Ak

))

=
(

S
{ak→ak+1}
{xk→xk+1}(Bk) − {S{ak→ak+1}(Bk)}

(
S{xk→xk+1}(Ak)

Ak

))

×S{xk+1→xk+2}({S
{ak→ak+1}
{xk→xk+1}(Ak)}Ak − S{xk→xk+1}(Ak)S{ak→ak+1}(Ak)),

and further calculations yield the following four-term equation

A2
k × S

{ak→ak+1}
{xk→xk+1}(Ak) × S

{ak→ak+1}
{xk→xk+2}(Bk)

−Ak × S{ak→ak+1}(Bk) × S{xk→xk+2}(Ak) × S
{ak→ak+1}
{xk→xk+1}(Ak)

−Ak × S{xk→xk+1}(Ak) × S{ak→ak+1}(Ak) × S
{ak→ak+1}
{xk→xk+2}(Bk)

+S{xk→xk+1}(Ak) × S{ak→ak+1}(Ak) × S{xk→xk+2}(Ak) × S{ak→ak+1}(Bk)

= A2
k × S

{ak→ak+1}
{xk→xk+1}(Bk) × S

{ak→ak+1}
{xk→xk+2}(Ak)

−Ak × S{xk→xk+2}(Ak) × S{ak→ak+1}(Ak) × S
{ak→ak+1}
{xk→xk+1}(Bk)

−Ak × S{ak→ak+1}(Bk) × S{xk→xk+1}(Ak) × S
{ak→ak+1}
{xk→xk+2}(Ak)

+S{ak→ak+1}(Bk) × S{xk→xk+1}(Ak) × S{xk→xk+2}(Ak) × S{ak→ak+1}(Ak).(7)
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Now the first terms on both sides of (7) are equal due to (4), the second terms to (5)
and the third terms to (6), while the fourth terms are exactly equal. Thus we have
completed the proof.

Thus, we have

k+1∑

m=1

Lk+1(k + 1, m)Uk+1(m, k)

=
k∑

m=1

Lk+1(k + 1, m)Uk+1(m, k)

=
(

xk+1

x1

)a1

× xak

1 +
k−1∑

m=2

(
xk+1

xm

)a1 S{xm→xk+1}(Am)
Am

× xa1
m S{am→ak}(Bm)

+
(

xk+1

xk

)a1
(

S{xk→xk+1}(Ak)
Ak

)
× xa1

k Bk

= xak

k+1

= Gk+1(k + 1, k),

and by (3),

k+1∑

m=1

Lk+1(k, m)Uk+1(m, k + 1)

=
(

xk+1

x1

)a1

× x
ak+1
1 +

k∑

m=2

(
xk+1

xm

)a1 S{xm→xk+1}(Am)
Am

× xa1
m S{am→ak+1}(Bm)

+1 × xa1
k+1Bk+1

=
(

xk+1

x1

)a1

× x
ak+1
1 +

k−1∑

m=2

(
xk+1

xm

)a1 S{xm→xk+1}(Am)
Am

× xa1
m S{am→ak+1}(Bm)

+
(

xk+1

xk

)a1 S{xk→xk+1}(Ak)
Ak

× xa1
k S{ak→ak+1}(Bk) + xa1

k+1Bk+1

=
(

xk+1

x1

)a1

× x
ak+1
1 +

k−1∑

m=2

(
xk+1

xm

)a1 S{xm→xk+1}(Am)
Am

× xa1
m S{am→ak+1}(Bm)

+xa1
k+1

S{xk→xk+1}(Ak)
Ak

× S{ak→ak+1}(Bk)

+xa1
k+1 ×

(
S
{ak→ak+1}
{xk→xk+1}(Bk) − S{ak→ak+1}(Bk)

(
S{xk→xk+1}(Ak)

(Ak)

))

=
(

xk+1

x1

)a1

× x
ak+1
1 +

k−1∑

m=2

(
xk+1

xm

)a1 S{xm→xk+1}(Am)
Am

× xa1
m S{am→ak+1}(Bm)

+xa1
k+1 × S

{ak→ak+1}
{xk→xk+1}(Bk)

= x
ak+1
k+1 = Gk+1(k + 1, k + 1).
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Thus we have completed the proof.
To illustrate our result, we first give an example of the explicit factorization of G4,

and then using Mathematica we provide a program to verify the correctness of our
result in a special case.

EXAMPLE 2.2. Let n = 4. Then G4 = L4U4, where

G4 =




x1
a1 x1

a2 x1
a3 x1

a4

x2
a1 x2

a2 x2
a3 x2

a4

x3
a1 x3

a2 x3
a3 x3

a4

x4
a1 x4

a2 x4
a3 x4

a4


 , L4 =




1 0 0 0
(x2

x1
)a1 1 0 0

(x3
x1

)a1 (x3
x2

)a1 (
Da2,a1

x3,x1
D

a2,a1
x2,x1

) 1 0

(x4
x1

)a1 (x4
x2

)a1 (
Da2,a1

x4,x1
D

a2,a1
x2,x1

) L4(4, 3) 1




,

U4 =




x
a1
1 x

a2
1 x

a3
1 x

a4
1

0 x
a1
2 (D

a2,a1
x2,x1 ) x

a1
2 (D

a3,a1
x2,x1 ) x

a1
2 (D

a4,a1
x2,x1 )

0 0 x
a1
3 ((D

a3,a1
x3,x1 )−

(D
a2,a1
x3,x1 )(D

a3,a1
x2,x1 )

(D
a2,a1
x2,x1 )

) x
a1
3 ((D

a4,a1
x3,x1 )−

(D
a2,a1
x3,x1 )(D

a4,a1
x2,x1 )

(D
a2,a1
x2,x1 )

)

0 0 0 U4(4,4)


 ,

and

L4(4, 3) =
(

x4

x3

)a1 [
(Da3,a1

x4,x1
)(Da2,a1

x2,x1
) − (Da2,a1

x4,x1
)(Da3,a1

x2,x1
)

(Da3,a1
x3,x1)(D

a2,a1
x2,x1) − (Da2,a1

x3,x1)(D
a3,a1
x2,x1)

]
,

U4(4, 4) =
{

xa1
4

(
(Da4,a1

x4,x1
) −

(Da2,a1
x4,x1

)(Da4,a1
x2,x1

)
(Da2,a1

x2,x1)
−

(
(Da4,a1

x3,x1
) −

(Da2,a1
x3,x1

)(Da4,a1
x2,x1

)
(Da2,a1

x2,x1)

)

×
[
(Da3,a1

x4,x1
)(Da2,a1

x2,x1
) − (Da2,a1

x4,x1
)(Da3,a1

x2,x1
)

(Da3,a1
x3,x1)(D

a2,a1
x2,x1) − (Da2,a1

x3,x1)(D
a3,a1
x2,x1)

])}
.

Here and in the following Examples 2.4 and 2.6, to simplify our notation, we set
D

ai ,aj
xm ,xn := x

ai−aj
m − x

ai−aj
n .

An explicit calculation using Mathematica. Let n = 4, x1 = x, x2 = y, x3 = z, x4 =
w and a1 = 0, a2 = 2, a3 = 4, a4 = 6, then the Mathematica program on L4 × U4

FullSimplify[{{1, 0, 0, 0}, {1, 1, 0,0},{1, (z2− x2)/(y2 − x2), 1, 0}, {1, (w2− x2)/(y2 −
x2), ((w4 − x4)(y2 − x2) − (w2 − x2)(y4 − x4))/((z4 − x4)(y2 − x2) − (z2 − x2)(y4 −
x4)), 1}}.{{1, x2, x4, x6}, {0, (y2 − x2), (y4 − x4), (y6 − x6)}, {0, 0, ((z4 − x4) − ((z2 −
x2)(y4 − x4))/(y2 − x2)), ((z6 − x6) − ((z2 − x2)(y6 − x6))/(y2 − x2))}, {0, 0, 0, ((w6 −
x6)− ((w2−x2)(y6−x6))/(y2−x2))− ((z6−x6)− ((z2−x2)(y6−x6))/(y2−x2))((w4−
x4)(y2 − x2) − (w2 − x2)(y4 − x4))/((z4 − x4)(y2 − x2) − (z2 − x2)(y4 − x4))}}]
produces the result 



1 x2 x4 x6

1 y2 y4 y6

1 z2 z4 z6

1 w2 w4 w6


 .

Since the determinant of a triangular matrix is the product of the entries of the
main diagonal, as a first by-product, we get the following immediate corollary which
provides a recursive formula for the determinant of Gn.
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COROLLARY 2.3. The determinant of Gn is as follows:

det Gn =
∏

1≤i≤n

Un(i, i) = xa1
1 ×

∏

2≤i≤n

xa1
i Bi.

EXAMPLE 2.4. Let n = 4. Then

det G4 =
∏

1≤i≤4

Un(i, i) = xa1
1 ×

∏

2≤i≤4

xa1
i Bi

= xa1
1 xa1

2 (Da2,a1
x2,x1

)xa1
3

(
(Da3,a1

x3,x1
) −

(Da2,a1
x3,x1

)(Da3,a1
x2,x1

)
(Da2,a1

x2,x1)

)

×
{

xa1
4

(
(Da4,a1

x4,x1
) −

(Da2,a1
x4,x1

)(Da4,a1
x2,x1

)
(Da2,a1

x2,x1)
−

(
(Da4,a1

x3,x1
) −

(Da2,a1
x3,x1

)(Da4 ,a1
x2,x1

)
(Da2,a1

x2,x1)

)

×
[
(Da3,a1

x4,x1
)(Da2,a1

x2,x1
) − (Da2,a1

x4,x1
)(Da3,a1

x2,x1
)

(Da3,a1
x3,x1)(D

a2,a1
x2,x1) − (Da2,a1

x3,x1)(D
a3,a1
x2,x1)

])}
.

For any n×n matrix A, let Ãij be the matrix obtained from A by deleting the i-th
row and the j-th column. Then

A−1 = Transpose of
(−1)i+jdet(Ãij)

det(A)
.

Because (G̃n)ji is still a totally positive generalized Vandermonde matrix, det(G̃n)ji

can be computed by Corollary 2.3. Basing on the fact and the above formula, we
establish the second by-product:

COROLLARY 2.5. The entry of the inverse of Gn is G−1
n (i, j) =

(−1)j+i det((G̃n)ji)

det(Gn) .

EXAMPLE 2.6. Let n = 4. Then G−1
4 is given by

1
x

a1
1 x

a1
2 x

a1
3 x

a1
4 ((D

a3,a1
x3,x1 )(D

a2,a1
x2,x1 )−(D

a2,a1
x3 ,x1 )(D

a3,a1
x2,x1 ))

× 1

(D
a4,a1
x4,x1 )−

(D
a2,a1
x4,x1 )(D

a4,a1
x2,x1 )

(D
a2,a1
x2,x1 )

−


(D

a4,a1
x3,x1 )−

(D
a2,a1
x3,x1 )(D

a4,a1
x2,x1 )

(D
a2,a1
x2,x1 )


×


 (D

a3,a1
x4,x1 )(D

a2,a1
x2,x1 )−(D

a2,a1
x4 ,x1 )(D

a3,a1
x2,x1 )

(D
a3,a1
x3,x1 )(D

a2,a1
x2,x1 )−(D

a2,a1
x3 ,x1 )(D

a3,a1
x2,x1 )




×




x
a2
2 x

a2
3 x

a2
4 ((D

a4,a2
x4,x2 )(D

a3,a2
x3 ,x2 )−(D

a3,a2
x4,x2 )(D

a4,a2
x3,x2 )) −x

a2
1 x

a2
3 x

a2
4 ((D

a4,a2
x4,x1 )(D

a3,a2
x3,x1 )−(D

a3,a2
x4 ,x1 )(D

a4,a2
x3,x1 ))

−x
a1
2 x

a1
3 x

a1
4 ((D

a4,a1
x4,x2 )(D

a3,a1
x3,x2 )−(D

a3,a1
x4 ,x2 )(D

a4,a1
x3,x2 )) x

a1
1 x

a1
3 x

a1
4 ((D

a4,a1
x4,x1 )(D

a3,a1
x3,x1 )−(D

a3,a1
x4,x1 )(D

a4,a1
x3,x1 ))

x
a1
2 x

a1
3 x

a1
4 ((D

a4,a1
x4,x2 )(D

a2,a1
x3 ,x2 )−(D

a2,a1
x4,x2 )(D

a4,a1
x3,x2 )) −x

a1
1 x

a1
3 x

a1
4 ((D

a4,a1
x4,x1 )(D

a2,a1
x3,x1 )−(D

a2,a1
x4 ,x1 )(D

a4,a1
x3,x1 ))

−x
a1
2 x

a1
3 x

a1
4 ((D

a3,a1
x4,x2 )(D

a2,a1
x3,x2 )−(D

a2,a1
x4 ,x2 )(D

a3,a1
x3,x2 )) x

a1
1 x

a1
3 x

a1
4 ((D

a3,a1
x4,x1 )(D

a2,a1
x3,x1 )−(D

a2,a1
x4,x1 )(D

a3,a1
x3,x1 ))

x
a2
1 x

a2
2 x

a2
4 ((D

a4,a2
x4,x1 )(D

a3,a2
x2,x1 )−(D

a3,a2
x4 ,x1 )(D

a4,a2
x2,x1 )) −x

a2
1 x

a2
2 x

a2
3 ((D

a4,a2
x3,x1 )(D

a3,a2
x2,x1 )−(D

a3,a2
x3 ,x1 )(D

a4,a2
x2,x1 ))

−x
a1
1 x

a1
2 x

a1
4 ((D

a4,a1
x4,x1 )(D

a3,a1
x2,x1 )−(D

a3,a1
x4,x1 )(D

a4,a1
x2 ,x1 )) x

a1
1 x

a1
2 x

a1
3 ((D

a4,a1
x3 ,x1 )(D

a3,a1
x2,x1 )−(D

a3,a1
x3 ,x1 )(D

a4,a1
x2,x1 ))

x
a1
1 x

a1
2 x

a1
4 ((D

a4,a1
x4,x1 )(D

a2,a1
x2,x1 )−(D

a2,a1
x4 ,x1 )(D

a4,a1
x2,x1 )) −x

a1
1 x

a1
2 x

a1
3 ((D

a4,a1
x3,x1 )(D

a2,a1
x2,x1 )−(D

a2,a1
x3 ,x1 )(D

a4,a1
x2,x1 ))

−x
a1
1 x

a1
2 x

a1
4 ((D

a3,a1
x4,x1 )(D

a2,a1
x2,x1 )−(D

a2,a1
x4,x1 )(D

a3,a1
x2 ,x1 )) x

a1
1 x

a1
2 x

a1
3 ((D

a3,a1
x3 ,x1 )(D

a2,a1
x2,x1 )−(D

a2,a1
x3 ,x1 )(D

a3,a1
x2,x1 ))




.

As a last by-product, due to Corollary 2.3, we give the following recursive formula
of the Schur function sλ(x1, x2, · · · , xn) and we illustrate the result by an example.
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COROLLARY 2.7. The Schur function sλ(x1, x2, · · · , xn) can be expressed as

sλ(x1, x2, · · · , xn) =
xa1

1 ×
∏

2≤i≤n xa1
i Bi∏

1≤i<j≤n(xj − xi)
.

EXAMPLE 2.8. Let λ = (7, 5, 3, 1) and n = 4. Then (a1, a2, a3, a4) = (1, 4, 7, 10)
and

det G{4;1,4,7,10} = xa1
1 ×

∏

2≤i≤4

xa1
i Bi

= x1x2(x3
2 − x3

1)x3

(
(x6

3 − x6
1) −

(x3
3 − x3

1)(x6
2 − x6

1)
(x3

2 − x3
1)

)

×x4

(
(x9

4 − x9
1) −

(x3
4 − x3

1)(x9
2 − x9

1)
(x3

2 − x3
1)

−
(

(x9
3 − x9

1) −
(x3

3 − x3
1)(x9

2 − x9
1)

(x3
2 − x3

1)

)

×
(

(x6
4 − x6

1)(x3
2 − x3

1) − (x3
4 − x3

1)(x6
2 − x6

1)
(x6

3 − x6
1)(x

3
2 − x3

1) − (x3
3 − x3

1)(x
6
2 − x6

1)

))

= x1x2x3x4(x2
4 + x4x3 + x2

3)(x
2
4 + x4x2 + x2

2)(x
2
4 + x4x1 + x2

1)
×(x2

3 + x3x2 + x2
2)(x

2
3 + x3x1 + x2

1)(x
2
2 + x2x1 + x2

1)

×
∏

1≤i<j≤4

(xj − xi),

so by Corollary 2.7, we see that s(7,5,3,1)(x1, x2, x3, x4) is equal to

x1x2x3x4(x2
4 + x4x3 + x2

3)(x
2
4 + x4x2 + x2

2)
×(x2

4 + x4x1 + x2
1)(x

2
3 + x3x2 + x2

2)(x
2
3 + x3x1 + x2

1)(x
2
2 + x2x1 + x2

1).

As we can see, there are 36 = 729 semistandard (7, 5, 3, 1) tableaux, it seems not easy
to write out all of the semistandard (7, 5, 3, 1) tableaux.
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