An Explicit Factorization Of Totally Positive Generalized Vandermonde Matrices Avoiding Schur Functions*

Young-Ming Chen ${ }^{\dagger}$, Hsuan-Chu Li ${ }^{\ddagger}$, Eng-Tjioe Tan ${ }^{\S}$

Received 24 January 2007

Abstract

We consider a totally positive generalized Vandermonde matrix and obtain by induction its unique LU factorization avoiding Schur functions. As by-products, we get a recursive formula for the determinant and the inverse of a totally positive generalized Vandermonde matrix and express any Schur function in an explicit form.

1 Introduction

Let

$$
G_{\left\{n ; a_{1}, a_{2}, \cdots, a_{n}\right\}}=\left[\begin{array}{cccc}
x_{1}^{a_{1}} & x_{1}^{a_{2}} & \cdots & x_{1}^{a_{n}} \\
x_{2}^{a_{1}} & x_{2}^{a_{2}} & \cdots & x_{2}^{a_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n}^{a_{1}} & x_{n}^{a_{2}} & \cdots & x_{n}^{a_{n}}
\end{array}\right]
$$

be a totally positive (TP) generalized Vandermonde matrix [1, p.142], where $0 \leq a_{1}<$ $a_{2}<\cdots<a_{n}$ are integers and $0<x_{1}<x_{2}<\cdots<x_{n}$. In connection with Schur functions we define the partition λ associated with G as the nonincreasing sequence of nonnegative integers

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)=\left(a_{n}-(n-1), a_{n-1}-(n-2), \cdots, a_{1}\right),
$$

and get

$$
G_{\left\{n ; a_{1}, a_{2}, \cdots, a_{n}\right\}}=\left[x_{i}^{j-1+\lambda_{n-j+1}}\right]_{1 \leq i, j \leq n},
$$

[^0]and Schur function associated to λ is defined as
$$
s_{\lambda}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\frac{\operatorname{det} G_{\left\{n ; a_{1}, a_{2}, \cdots, a_{n}\right\}}}{\operatorname{det} G_{\{n ; 0,1, \cdots, n-1\}}} .
$$

In a recent paper [1], J. Demmel and P. Koev performed accurate and efficient matrix computations of $G_{n}:=G_{\left\{n ; a_{1}, a_{2}, \cdots, a_{n}\right\}}$. Their results, among others, are an explicit bidiagonal decompositions of G_{n}^{-1} and an LDU decomposition of G_{n} which involves Schur functions.

In a previous paper [2], using only mathematical induction, we succeeded to provide the unique LU factorization of a special case of generalized Vandermonde matrices, and this prompts us to do the same thing with G_{n}. Our main result presents an explicit LU factorization not involving Schur functions. As by-products, we calculate the determinant, the inverse of G_{n} and the Schur functions $s_{\lambda}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$.

2 The LU factorization of G_{n} and applications

An LU factorization is to express a matrix as a product of a lower triangular matrix L and an upper triangular matrix U. If L is a lower triangular matrix with unit main diagonal and U is an upper triangular matrix, the LU factorization is unique. Our main aim in this note is to give the explicit unique LU factorization of G_{n} without involving Schur functions; Demmel and Koev provided in [1], Section 3, an explicit bidiagonal decomposition of G_{n}^{-1} which involves Schur functions. Our main result is the following theorem whose proof occupies almost the whole Section 2 and is carried out using delicate induction arguments.

THEOREM 2.1. G_{n} can be factorized as $G_{n}=L_{n} U_{n}$, where $L_{n}=\left[L_{n}(i, j)\right]$ is a lower triangular matrix with unit main diagonal and $U_{n}=\left[U_{n}(i, j)\right]$ is an upper triangular matrix, whose entries are defined as follows:

$$
L_{n}(i, j)=\left\{\begin{array}{ll}
1, & i=j ; \\
0, & i<j ; \\
\left(\frac{x_{i}}{x_{1}}\right)^{a_{1}}, & j=1, i \geq 2 ; \\
\left(\frac{x_{i}}{x_{j}}\right)^{a_{1}} \frac{S_{\left\{x_{j} \rightarrow x_{i}\right\}}\left(A_{j}\right)}{A_{j}}, & i \geq j+1, j \geq 2 .
\end{array} ;\right.
$$

and

$$
U_{n}(i, j)= \begin{cases}x_{1}^{a_{j}}, & i=1 \\ 0, & i>j \\ x_{i}^{a_{1}} B_{i}, & i=j \geq 2 \\ x_{i}^{a_{1}} S^{\left\{a_{i} \rightarrow a_{j}\right\}}\left(B_{i}\right), & j \geq i+1, i \geq 2\end{cases}
$$

where A_{i}, B_{j}, and the notations $S_{\left\{x_{k-1} \rightarrow x_{k}\right\}}, S^{\left\{a_{k-1} \rightarrow a_{k}\right\}}$ are defined recursively for $i, j \geq 2$.

$$
\begin{gathered}
A_{2}=B_{2}=x_{2}^{a_{2}-a_{1}}-x_{1}^{a_{2}-a_{1}} \\
A_{k}=\left\{S_{\left\{x_{k-1} \rightarrow x_{k}\right\}}^{\left\{a_{k-1} \rightarrow a_{k}\right\}}\left(A_{k-1}\right)\right\} A_{k-1}-S_{\left\{x_{k-1} \rightarrow x_{k}\right\}}\left(A_{k-1}\right) S^{\left\{a_{k-1} \rightarrow a_{k}\right\}}\left(A_{k-1}\right), k \geq 3
\end{gathered}
$$

$$
\begin{aligned}
& B_{k}=S_{\left\{x_{k-1} \rightarrow x_{k}\right\}}^{\left\{a_{k-1} \rightarrow a_{k}\right\}}\left(B_{k-1}\right)-\left\{S^{\left\{a_{k-1} \rightarrow a_{k}\right\}}\left(B_{k-1}\right)\right\}\left(\frac{S_{\left\{x_{k-1} \rightarrow x_{k}\right\}}\left(A_{k-1}\right)}{A_{k-1}}\right), k \geq 3 ; \\
& S_{\left\{x_{k-1} \rightarrow x_{k}\right\}}\left(A_{k-1}\right):=x_{k} \text { substitutes } x_{k-1} \text { in } A_{k-1} ; \\
& S^{\left\{a_{k-1} \rightarrow a_{k}\right\}}\left(A_{k-1}\right):=a_{k} \text { substitutes } a_{k-1} \text { in } A_{k-1} .
\end{aligned}
$$

PROOF. We use mathematical induction on n, the size of G_{n}. The case where $n=2$ follows from

$$
L_{2} U_{2}=\left[\begin{array}{cc}
1 & 0 \\
\left(\frac{x_{2}}{x_{1}}\right)^{a_{1}} & 1
\end{array}\right]\left[\begin{array}{cc}
x_{1}^{a_{1}} & x_{1}^{a_{2}} \\
0 & x_{2}^{a_{1}}\left(x_{2}^{a_{2}-a_{1}}-x_{1}^{a_{2}-a_{1}}\right)
\end{array}\right]=\left[\begin{array}{ll}
x_{1}^{a_{1}} & x_{1}^{a_{2}} \\
x_{2}^{a_{1}} & x_{2}^{a_{2}}
\end{array}\right]=G_{2}
$$

Assume $G_{k}=L_{k} U_{k}$ holds, we want to prove $G_{k+1}=L_{k+1} L_{k+1}$. By induction hypothesis, we know that

$$
\begin{align*}
& G_{k}(k, l)=\sum_{m=1}^{l} L_{k}(k, m) U_{k}(m, l), 1 \leq l \leq k, \tag{1}\\
& G_{k}(l, k)=\sum_{m=1}^{l} L_{k}(l, m) U_{k}(m, k), 1 \leq l \leq k . \tag{2}
\end{align*}
$$

It is sufficient to show that

$$
G_{k+1}(k+1, l)=\sum_{m=1}^{k+1} L_{k+1}(k+1, m) U_{k+1}(m, l), 1 \leq l \leq k
$$

and

$$
G_{k+1}(l, k+1)=\sum_{m=1}^{k+1} L_{k+1}(l, m) U_{k+1}(m, k+1), 1 \leq l \leq k+1
$$

Firstly, we find that

$$
\begin{aligned}
\sum_{m=1}^{k+1} L_{k+1}(k+1, m) U_{k+1}(m, 1) & =L_{k+1}(k+1,1) U_{k+1}(1,1) \\
& =\left(\frac{x_{k+1}}{x_{1}}\right)^{a_{1}} \times x_{1}^{a_{1}} \\
& =x_{k+1}^{a_{1}} \\
& =G_{k+1}(k+1,1)
\end{aligned}
$$

and by (1), we get

$$
\begin{aligned}
\sum_{m=1}^{k} L_{k}(k, m) U_{k}(m, l)= & \sum_{m=1}^{l} L_{k}(k, m) U_{k}(m, l) \\
= & \left(\frac{x_{k}}{x_{1}}\right)^{a_{1}} \times x_{1}^{a_{l}} \\
& +\sum_{m=2}^{l}\left(\frac{x_{k}}{x_{m}}\right)^{a_{1}} \frac{S_{\left\{x_{m} \rightarrow x_{k}\right\}}\left(A_{m}\right)}{A_{m}} \times x_{m}^{a_{1}} S^{\left\{a_{m} \rightarrow a_{l}\right\}}\left(B_{m}\right) \\
= & G_{k}(k, l) \\
= & x_{k}^{a_{l}}
\end{aligned}
$$

for $2 \leq l \leq k-1$, so

$$
\begin{aligned}
& \sum_{m=1}^{k+1} L_{k+1}(k+1, m) U_{k+1}(m, l) \\
= & \sum_{m=1}^{l} L_{k+1}(k+1, m) U_{k+1}(m, l) \\
= & \left(\frac{x_{k+1}}{x_{1}}\right)^{a_{1}} \times x_{1}^{a_{l}}+\sum_{m=2}^{l}\left(\frac{x_{k+1}}{x_{m}}\right)^{a_{1}} \frac{S_{\left\{x_{m} \rightarrow x_{k+1}\right\}}\left(A_{m}\right)}{A_{m}} \times x_{m}^{a_{1}} S^{\left\{a_{m} \rightarrow a_{l}\right\}}\left(B_{m}\right) \\
= & x_{k+1}^{a_{l}} \\
= & G_{k+1}(k+1, l)
\end{aligned}
$$

for $2 \leq l \leq k-1$. Next, we have

$$
\begin{aligned}
\sum_{m=1}^{k+1} L_{k+1}(1, m) U_{k+1}(m, k+1) & =L_{k+1}(1,1) U_{k+1}(1, k+1) \\
& =1 \times x_{1}^{a_{k+1}} \\
& =x_{1}^{a_{k+1}} \\
& =G_{k+1}(1, k+1)
\end{aligned}
$$

and by (2), we can get

$$
\begin{aligned}
& \sum_{m=1}^{k} L_{k}(l, m) U_{k}(m, k) \\
= & \sum_{m=1}^{l} L_{k}(l, m) U_{k}(m, k) \\
= & \left(\frac{x_{l}}{x_{1}}\right)^{a_{1}} \times x_{1}^{a_{k}}+\sum_{m=2}^{l}\left(\frac{x_{l}}{x_{m}}\right)^{a_{1}} \frac{S_{\left\{x_{m} \rightarrow x_{l}\right\}}\left(A_{m}\right)}{A_{m}} \times x_{m}^{a_{1}} S^{\left\{a_{m} \rightarrow a_{k}\right\}}\left(B_{m}\right) \\
= & G_{k}(l, k) \\
= & x_{l}^{a_{k}}
\end{aligned}
$$

for $2 \leq l \leq k-1$, so

$$
\begin{aligned}
& \sum_{m=1}^{k+1} L_{k+1}(l, m) U_{k+1}(m, k+1) \\
= & \sum_{m=1}^{l} L_{k+1}(l, m) U_{k+1}(m, k+1) \\
= & \left(\frac{x_{l}}{x_{1}}\right)^{a_{1}} \times x_{1}^{a_{k+1}}+\sum_{m=2}^{l}\left(\frac{x_{l}}{x_{m}}\right)^{a_{1}} \frac{S_{\left\{x_{m} \rightarrow x_{l}\right\}}\left(A_{m}\right)}{A_{m}} \times x_{m}^{a_{1}} S^{\left\{a_{m} \rightarrow a_{k+1}\right\}}\left(B_{m}\right) \\
= & x_{l}^{a_{k+1}}=G_{k+1}(l, k+1),
\end{aligned}
$$

for $2 \leq l \leq k-1$; let $l=k$ in (2), we establish the following equation:

$$
\begin{align*}
x_{k}^{a_{k}}= & \sum_{m=1}^{k} L_{k}(k, m) U_{k}(m, k) \\
= & \left(\frac{x_{k}}{x_{1}}\right)^{a_{1}} \times x_{1}^{a_{k}}+\sum_{m=2}^{k-1}\left(\frac{x_{k}}{x_{m}}\right)^{a_{1}} \frac{S_{\left\{x_{m} \rightarrow x_{k}\right\}}\left(A_{m}\right)}{A_{m}} \times x_{m}^{a_{1}} S^{\left\{a_{m} \rightarrow a_{k}\right\}}\left(B_{m}\right) \\
& +1 \times x_{k}^{a_{1}} B_{k} . \tag{3}
\end{align*}
$$

Altogether, we conclude that

$$
\begin{aligned}
& \sum_{m=1}^{k+1} L_{k+1}(k, m) U_{k+1}(m, k+1) \\
= & \sum_{m=1}^{k} L_{k+1}(k, m) U_{k+1}(m, k+1) \\
= & \left(\frac{x_{k}}{x_{1}}\right)^{a_{1}} \times x_{1}^{a_{k+1}}+\sum_{m=2}^{k-1}\left(\frac{x_{k}}{x_{m}}\right)^{a_{1}} \frac{S_{\left\{x_{m} \rightarrow x_{k}\right\}}\left(A_{m}\right)}{A_{m}} \times x_{m}^{a_{1}} S^{\left\{a_{m} \rightarrow a_{k+1}\right\}}\left(B_{m}\right) \\
& +1 \times x_{k}^{a_{1}} \times S^{\left\{a_{k} \rightarrow a_{k+1}\right\}} B_{k} \\
= & x_{k}^{a_{k+1}} \\
= & G_{k+1}(k, k+1) .
\end{aligned}
$$

On the other hand, we will prove that

$$
\begin{aligned}
x_{k+1}^{a_{k}}= & \left(\frac{x_{k+1}}{x_{1}}\right)^{a_{1}} \times x_{1}^{a_{k}}+\sum_{m=2}^{k-1}\left(\frac{x_{k+1}}{x_{m}}\right)^{a_{1}} \frac{S_{\left\{x_{m} \rightarrow x_{k+1}\right\}}\left(A_{m}\right)}{A_{m}} \times x_{m}^{a_{1}} S^{\left\{a_{m} \rightarrow a_{k}\right\}}\left(B_{m}\right) \\
& +x_{k+1}^{a_{1}}\left(\frac{S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}\left(A_{k}\right)}{A_{k}}\right) \times B_{k} .
\end{aligned}
$$

In fact, application of $S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}$ on both sides of (3) results in the latter equation except the last term being $1 \times S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}\left(x_{k}^{a_{1}} B_{k}\right)$. Thus the validity of the latter
equation is based on the fact that

$$
A_{k} \times S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}\left(B_{k}\right)=B_{k} \times S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}\left(A_{k}\right)
$$

which can be proved by induction on k as follows. The case $k=2$ is trivial, since $A_{2}=B_{2}$. Assume the induction hypothesis

$$
A_{k} \times S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}\left(B_{k}\right)=B_{k} \times S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}\left(A_{k}\right)
$$

holds. Then by applying $S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}} S_{\left\{x_{k+1} \rightarrow x_{k+2}\right\}}, S^{\left\{a_{k} \rightarrow a_{k+1}\right\}}$ and $S_{\left\{x_{k+1} \rightarrow x_{k+2}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}$ to both sides of the above equation respectively, we obtain

$$
\begin{align*}
& S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(A_{k}\right) \times S_{\left\{x_{k} \rightarrow x_{k+2}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right)=S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right) \times S_{\left\{x_{k} \rightarrow x_{k+2}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(A_{k}\right) ; \tag{4}\\
& S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(A_{k}\right) \times S^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right)=S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right) \times S^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(A_{k}\right) ; \tag{5}\\
& S^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(A_{k}\right) \times S_{\left\{x_{k} \rightarrow x_{k+2}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right)=S^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right) \times S_{\left\{x_{k} \rightarrow x_{k+2}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(A_{k}\right) . \tag{6}
\end{align*}
$$

Now we prove the induction step

$$
A_{k+1} \times S_{\left\{x_{k+1} \rightarrow x_{k+2}\right\}}\left(B_{k+1}\right)=B_{k+1} \times S_{\left\{x_{k+1} \rightarrow x_{k+2}\right\}}\left(A_{k+1}\right)
$$

which, by using the definitions of A_{k+1} and B_{k+1}, becomes

$$
\begin{aligned}
& \left(\left\{S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(A_{k}\right)\right\} A_{k}-S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}\left(A_{k}\right) S^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(A_{k}\right)\right) \\
& \times S_{\left\{x_{k+1} \rightarrow x_{k+2}\right\}}\left(S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}^{\left\{a_{k} \rightarrow x_{k+1}\right\}}\left(B_{k}\right)-\left\{S^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right)\right\}\left(\frac{S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}\left(A_{k}\right)}{A_{k}}\right)\right) \\
= & \left(S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right)-\left\{S^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right)\right\}\left(\frac{S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}\left(A_{k}\right)}{A_{k}}\right)\right) \\
& \times S_{\left\{x_{k+1} \rightarrow x_{k+2}\right\}}\left(\left\{S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(A_{k}\right)\right\} A_{k}-S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}\left(A_{k}\right) S^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(A_{k}\right)\right),
\end{aligned}
$$

and further calculations yield the following four-term equation

$$
\begin{align*}
& A_{k}^{2} \times S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(A_{k}\right) \times S_{\left\{x_{k} \rightarrow x_{k+2}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right) \\
& -A_{k} \times S^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right) \times S_{\left\{x_{k} \rightarrow x_{k+2}\right\}}\left(A_{k}\right) \times S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(A_{k}\right) \\
& -A_{k} \times S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}\left(A_{k}\right) \times S^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(A_{k}\right) \times S_{\left\{x_{k} \rightarrow x_{k+2}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right) \\
& +S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}\left(A_{k}\right) \times S^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(A_{k}\right) \times S_{\left\{x_{k} \rightarrow x_{k+2}\right\}}\left(A_{k}\right) \times S^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right) \\
= & A_{k}^{2} \times S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}^{\left\{a_{k} \rightarrow x_{k+1}\right\}}\left(B_{k}\right) \times S_{\left\{x_{k} \rightarrow x_{k+2}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(A_{k}\right) \\
& -A_{k} \times S_{\left\{x_{k} \rightarrow x_{k+2}\right\}}\left(A_{k}\right) \times S^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(A_{k}\right) \times S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right) \\
& -A_{k} \times S^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right) \times S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}\left(A_{k}\right) \times S_{\left\{x_{k} \rightarrow x_{k+2}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(A_{k}\right) \\
& +S^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right) \times S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}\left(A_{k}\right) \times S_{\left\{x_{k} \rightarrow x_{k+2}\right\}}\left(A_{k}\right) \times S^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(A_{k}\right) \cdot(7) \tag{7}
\end{align*}
$$

Now the first terms on both sides of (7) are equal due to (4), the second terms to (5) and the third terms to (6), while the fourth terms are exactly equal. Thus we have completed the proof.

Thus, we have

$$
\begin{aligned}
& \sum_{m=1}^{k+1} L_{k+1}(k+1, m) U_{k+1}(m, k) \\
= & \sum_{m=1}^{k} L_{k+1}(k+1, m) U_{k+1}(m, k) \\
= & \left(\frac{x_{k+1}}{x_{1}}\right)^{a_{1}} \times x_{1}^{a_{k}}+\sum_{m=2}^{k-1}\left(\frac{x_{k+1}}{x_{m}}\right)^{a_{1}} \frac{S_{\left\{x_{m} \rightarrow x_{k+1}\right\}}\left(A_{m}\right)}{A_{m}} \times x_{m}^{a_{1}} S^{\left\{a_{m} \rightarrow a_{k}\right\}}\left(B_{m}\right) \\
& +\left(\frac{x_{k+1}}{x_{k}}\right)^{a_{1}}\left(\frac{S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}\left(A_{k}\right)}{A_{k}}\right) \times x_{k}^{a_{1}} B_{k} \\
= & x_{k+1}^{a_{k}} \\
= & G_{k+1}(k+1, k)
\end{aligned}
$$

and by (3),

$$
\begin{aligned}
& \sum_{m=1}^{k+1} L_{k+1}(k, m) U_{k+1}(m, k+1) \\
= & \left(\frac{x_{k+1}}{x_{1}}\right)^{a_{1}} \times x_{1}^{a_{k+1}}+\sum_{m=2}^{k}\left(\frac{x_{k+1}}{x_{m}}\right)^{a_{1}} \frac{S_{\left\{x_{m} \rightarrow x_{k+1}\right\}}\left(A_{m}\right)}{A_{m}} \times x_{m}^{a_{1}} S^{\left\{a_{m} \rightarrow a_{k+1}\right\}}\left(B_{m}\right) \\
& +1 \times x_{k+1}^{a_{1}} B_{k+1} \\
= & \left(\frac{x_{k+1}}{x_{1}}\right)^{a_{1}} \times x_{1}^{a_{k+1}}+\sum_{m=2}^{k-1}\left(\frac{x_{k+1}}{x_{m}}\right)^{a_{1}} \frac{S_{\left\{x_{m} \rightarrow x_{k+1}\right\}}\left(A_{m}\right)}{A_{m}} \times x_{m}^{a_{1}} S^{\left\{a_{m} \rightarrow a_{k+1}\right\}}\left(B_{m}\right) \\
& +\left(\frac{x_{k+1}}{x_{k}}\right)^{a_{1}} \frac{S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}\left(A_{k}\right)}{A_{k}} \times x_{k}^{a_{1}} S^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right)+x_{k+1}^{a_{1}} B_{k+1} \\
= & \left(\frac{x_{k+1}}{x_{1}}\right)^{a_{1}} \times x_{1}^{a_{k+1}}+\sum_{m=2}^{k-1}\left(\frac{x_{k+1}}{x_{m}}\right)^{a_{1}} \frac{S_{\left\{x_{m} \rightarrow x_{k+1}\right\}}\left(A_{m}\right)}{A_{m}} \times x_{m}^{a_{1}} S^{\left\{a_{m} \rightarrow a_{k+1}\right\}}\left(B_{m}\right) \\
& +x_{k+1}^{a_{1}} \frac{S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}\left(A_{k}\right)}{A_{k}} \times S^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right) \\
& +x_{k+1}^{a_{1}} \times\left(S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right)-S^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right)\left(\frac{S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}\left(A_{k}\right)}{\left(A_{k}\right)}\right)\right) \\
= & \left(\frac{x_{k+1}}{x_{1}}\right)^{a_{1}} \times x_{1}^{a_{k+1}}+\sum_{m=2}^{k-1}\left(\frac{x_{k+1}}{x_{m}}\right)^{a_{1}} \frac{S_{\left\{x_{m} \rightarrow x_{k+1}\right\}}\left(A_{m}\right)}{A_{m}} \times x_{m}^{a_{1}} S^{\left\{a_{m} \rightarrow a_{k+1}\right\}}\left(B_{m}\right) \\
& +x_{k+1}^{a_{1}} \times S_{\left\{x_{k} \rightarrow x_{k+1}\right\}}^{\left\{a_{k} \rightarrow a_{k+1}\right\}}\left(B_{k}\right) \\
= & x_{k+1}^{a_{k+1}}=G_{k+1}(k+1, k+1) .
\end{aligned}
$$

Thus we have completed the proof.
To illustrate our result, we first give an example of the explicit factorization of G_{4}, and then using Mathematica we provide a program to verify the correctness of our result in a special case.

EXAMPLE 2.2. Let $n=4$. Then $G_{4}=L_{4} U_{4}$, where

$$
\begin{aligned}
& G_{4}=\left[\begin{array}{llll}
x_{1}{ }^{a_{1}} & x_{1}{ }^{a_{2}} & x_{1}{ }^{a_{3}} & x_{1}{ }^{a_{4}} \\
x_{2} a_{1} & x_{2} a_{2} & x_{2} a_{3} & x_{2} a_{4} \\
x_{3}{ }^{a_{1}} & x_{3} a_{2} & x_{3}{ }^{a_{3}} & x_{3}{ }^{a_{4}} \\
x_{4}{ }^{a_{1}} & x_{4}{ }^{a_{2}} & x_{4}{ }^{a_{3}} & x_{4}{ }^{a_{4}}
\end{array}\right], L_{4}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\left(\frac{x_{2}}{x_{1}}\right)^{a_{1}} & 1 & 0 & 0 \\
\left(\frac{x_{3}}{x_{1}}\right)^{a_{1}} & \left(\frac{x_{3}}{x_{1}}\right)^{a_{1}}\left(\frac{D_{x_{3}, a_{1}, a_{1}}^{D_{3}} x_{2}, x_{1}}{x_{1}}\right) & 1 & 0 \\
\left(\frac{x_{4}}{x_{1}}\right)^{a_{1}} & \left(\frac{x_{4}}{x_{2}}\right)^{a_{1}}\left(\frac{D_{x_{4}}^{a_{2}, x_{1}}}{D_{x_{2}, x_{1}}^{a_{1}}}\right) & L_{4}(4,3) & 1
\end{array}\right],
\end{aligned}
$$

and

$$
\begin{aligned}
& L_{4}(4,3)=\left(\frac{x_{4}}{x_{3}}\right)^{a_{1}}\left[\frac{\left(D_{x_{4}, x_{1}}^{a_{3}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{2}, a_{1}}\right)-\left(D_{x_{4}}^{a_{2}, a_{1}}\right)\left(D_{x_{2}}^{a_{3}, x_{1}}\right)}{\left(D_{x_{3}, x_{1}}^{a_{3}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{2}, a_{1}}\right)-\left(D_{x_{3}, x_{1}}^{a_{2}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{3}, a_{1}}\right)}\right] \\
& U_{4}(4,4)=\left\{x _ { 4 } ^ { a _ { 1 } } \left(\left(D_{x_{4}, x_{1}}^{a_{4}, a_{1}}\right)-\frac{\left(D_{x_{4}, x_{1}}^{a_{2}}\right)\left(D_{x_{2}, x_{1}}^{a_{2}}\right)}{\left(D_{x_{2}, x_{1}}^{a_{2}, a_{1}}\right)}-\left(\left(D_{x_{3}, x_{1}}^{a_{4}, a_{1}}\right)-\frac{\left(D_{x_{3}, x_{1}}^{a_{4}}\right)\left(D_{x_{2}, x_{1}}^{a_{4}, a_{1}}\right)}{\left(D_{x_{2}, x_{1}}^{a_{2}, a_{1}}\right)}\right)\right.\right. \\
&\left.\left.\times\left[\frac{\left(D_{x_{4}, x_{1}}^{a_{3}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{2}, a_{1}}\right)-\left(D_{x_{4}}^{a_{2}, x_{1}}\right)\left(D_{x_{2}}^{a_{3}, x_{1}}\right)}{\left(D_{x_{3}, x_{1}}^{a_{3}}\right)\left(D_{x_{2}, x_{1}}^{a_{1}, a_{1}}\right)-\left(D_{x_{3}, x_{1}}^{a_{2}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{3}, a_{1}}\right)}\right]\right)\right\} .
\end{aligned}
$$

Here and in the following Examples 2.4 and 2.6, to simplify our notation, we set $D_{x_{m}, x_{n}}^{a_{i}, a_{j}}:=x_{m}^{a_{i}-a_{j}}-x_{n}^{a_{i}-a_{j}}$.

An explicit calculation using Mathematica. Let $n=4, x_{1}=x, x_{2}=y, x_{3}=z, x_{4}=$ w and $a_{1}=0, a_{2}=2, a_{3}=4, a_{4}=6$, then the Mathematica program on $L_{4} \times U_{4}$
FullSimplify $\left[\left\{\{1,0,0,0\},\{1,1,0,0\},\left\{1,\left(z^{2}-x^{2}\right) /\left(y^{2}-x^{2}\right), 1,0\right\},\left\{1,\left(w^{2}-x^{2}\right) /\left(y^{2}-\right.\right.\right.\right.$ $\left.x^{2}\right),\left(\left(w^{4}-x^{4}\right)\left(y^{2}-x^{2}\right)-\left(w^{2}-x^{2}\right)\left(y^{4}-x^{4}\right)\right) /\left(\left(z^{4}-x^{4}\right)\left(y^{2}-x^{2}\right)-\left(z^{2}-x^{2}\right)\left(y^{4}-\right.\right.$ $\left.\left.\left.\left.x^{4}\right)\right), 1\right\}\right\} \cdot\left\{\left\{1, x^{2}, x^{4}, x^{6}\right\},\left\{0,\left(y^{2}-x^{2}\right),\left(y^{4}-x^{4}\right),\left(y^{6}-x^{6}\right)\right\},\left\{0,0,\left(\left(z^{4}-x^{4}\right)-\left(\left(z^{2}-\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.x^{2}\right)\left(y^{4}-x^{4}\right)\right) /\left(y^{2}-x^{2}\right)\right),\left(\left(z^{6}-x^{6}\right)-\left(\left(z^{2}-x^{2}\right)\left(y^{6}-x^{6}\right)\right) /\left(y^{2}-x^{2}\right)\right)\right\},\left\{0,0,0,\left(\left(w^{6}-\right.\right.\right.$ $\left.\left.x^{6}\right)-\left(\left(w^{2}-x^{2}\right)\left(y^{6}-x^{6}\right)\right) /\left(y^{2}-x^{2}\right)\right)-\left(\left(z^{6}-x^{6}\right)-\left(\left(z^{2}-x^{2}\right)\left(y^{6}-x^{6}\right)\right) /\left(y^{2}-x^{2}\right)\right)\left(\left(w^{4}-\right.\right.$ $\left.\left.\left.\left.\left.x^{4}\right)\left(y^{2}-x^{2}\right)-\left(w^{2}-x^{2}\right)\left(y^{4}-x^{4}\right)\right) /\left(\left(z^{4}-x^{4}\right)\left(y^{2}-x^{2}\right)-\left(z^{2}-x^{2}\right)\left(y^{4}-x^{4}\right)\right)\right\}\right\}\right]$
produces the result

$$
\left[\begin{array}{cccc}
1 & x^{2} & x^{4} & x^{6} \\
1 & y^{2} & y^{4} & y^{6} \\
1 & z^{2} & z^{4} & z^{6} \\
1 & w^{2} & w^{4} & w^{6}
\end{array}\right] .
$$

Since the determinant of a triangular matrix is the product of the entries of the main diagonal, as a first by-product, we get the following immediate corollary which provides a recursive formula for the determinant of G_{n}.

COROLLARY 2.3. The determinant of G_{n} is as follows:

$$
\operatorname{det} G_{n}=\prod_{1 \leq i \leq n} U_{n}(i, i)=x_{1}^{a_{1}} \times \prod_{2 \leq i \leq n} x_{i}^{a_{1}} B_{i}
$$

EXAMPLE 2.4. Let $n=4$. Then

$$
\begin{aligned}
\operatorname{det} G_{4}= & \prod_{1 \leq i \leq 4} U_{n}(i, i)=x_{1}^{a_{1}} \times \prod_{2 \leq i \leq 4} x_{i}^{a_{1}} B_{i} \\
= & x_{1}^{a_{1}} x_{2}^{a_{1}}\left(D_{x_{2}, x_{1}}^{a_{2}, a_{1}}\right) x_{3}^{a_{1}}\left(\left(D_{x_{3}, x_{1}}^{a_{3}, a_{1}}\right)-\frac{\left(D_{x_{3}, x_{1}}^{a_{2}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{3}, a_{1}}\right)}{\left(D_{x_{2}, x_{1}}^{a_{2}, x_{1}}\right)}\right) \\
& \times\left\{x _ { 4 } ^ { a _ { 1 } } \left(\left(D_{x_{4}, x_{1}}^{a_{4}, a_{1}}\right)-\frac{\left(D_{x_{4}}^{a_{2}, a_{1}}\right)\left(D_{x_{2}}^{a_{4}, a_{1}}\right)}{\left(D_{x_{2}, x_{1}}^{a_{2}, a_{1}}\right)}-\left(\left(D_{x_{3}, x_{1}}^{a_{4}, a_{1}}\right)-\frac{\left(D_{x_{3}, x_{1}}^{a_{2}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{4}, a_{1}}\right)}{\left(D_{x_{2}, x_{1}}^{a_{2}, a_{1}}\right)}\right)\right.\right. \\
& \left.\left.\times\left[\frac{\left(D_{x_{4}, x_{1}}^{a_{3}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{2}, a_{1}}\right)-\left(D_{x_{4}, x_{1}}^{a_{2}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{3}, a_{1}}\right)}{\left(D_{x_{3}, x_{1}}^{a_{3}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{2}, a_{1}}\right)-\left(D_{x_{3}, x_{1}}^{a_{2}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{3}, a_{1}}\right)}\right]\right)\right\} .
\end{aligned}
$$

For any $n \times n$ matrix A, let $\tilde{A}_{i j}$ be the matrix obtained from A by deleting the i-th row and the j-th column. Then

$$
A^{-1}=\text { Transpose of } \frac{(-1)^{i+j} \operatorname{det}\left(\tilde{A}_{i j}\right)}{\operatorname{det}(A)}
$$

Because $\left(\tilde{G}_{n}\right)_{j i}$ is still a totally positive generalized Vandermonde matrix, $\operatorname{det}\left(\tilde{G}_{n}\right)_{j i}$ can be computed by Corollary 2.3. Basing on the fact and the above formula, we establish the second by-product:

COROLLARY 2.5. The entry of the inverse of G_{n} is $G_{n}^{-1}(i, j)=\frac{(-1)^{j+i} \operatorname{det}\left(\left(\tilde{G}_{n}\right)_{j i}\right)}{\operatorname{det}\left(G_{n}\right)}$.
EXAMPLE 2.6. Let $n=4$. Then G_{4}^{-1} is given by

$$
\begin{aligned}
& \left.x_{1}^{a_{2}} x_{2}^{a_{2}} x_{4}^{a_{2}}\left(\left(D_{x_{4}, x_{1}}^{a_{4}, a_{2}}\right)\left(D_{x_{2}, x_{1}}^{a_{3}, a_{2}}\right)-\left(D_{x_{4}, x_{1}}^{a_{3}, a_{2}}\right)\left(D_{x_{2}, x_{1}}^{a_{4}, a_{2}}\right)\right) \quad-x_{1}^{a_{2}} x_{2}^{a_{2}} x_{3}^{a_{2}}\left(\left(D_{x_{3}, x_{1}}^{a_{4}, a_{2}}\right)\left(D_{x_{2}, x_{1}}^{a_{3}, a_{2}}\right)-\left(D_{x_{3}, x_{1}}^{a_{3}, a_{2}}\right)\left(D_{x_{2}, x_{1}}^{a_{4}, a_{2}}\right)\right)\right] \\
& -x_{1}^{a_{1}} x_{2}^{a_{1}} x_{4}^{a_{1}}\left(\left(D_{x_{4}, x_{1}}^{a_{4}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{3}, a_{1}}\right)-\left(D_{x_{4}, x_{1}}^{a_{3}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{4}, a_{1}}\right)\right) \quad x_{1}^{a_{1}} x_{2}^{a_{1}} x_{3}^{a_{1}}\left(\left(D_{x_{3}, x_{1}}^{a_{4}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{3}, a_{1}}\right)-\left(D_{x_{3}, x_{1}}^{a_{3}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{4}, a_{1}}\right)\right) \\
& x_{1}^{a_{1}} x_{2}^{a_{1}} x_{4}^{a_{1}}\left(\left(D_{x_{4}, x_{1}}^{a_{4}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{2}, a_{1}}\right)-\left(D_{x_{4}, x_{1}}^{a_{2}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{4}, a_{1}}\right)\right) \quad-x_{1}^{a_{1}} x_{2}^{a_{1}} x_{3}^{a_{1}}\left(\left(D_{x_{3}, x_{1}}^{a_{4}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{2}, a_{1}}\right)-\left(D_{x_{3}, x_{1}}^{a_{2}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{4}, a_{1}}\right)\right) \\
& \left.-x_{1}^{a_{1}} x_{2}^{a_{1}} x_{4}^{a_{1}}\left(\left(D_{x_{4}, x_{1}}^{a_{3}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{2}, a_{1}}\right)-\left(D_{x_{4}, x_{1}}^{a_{2}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{3}, a_{1}}\right)\right) \quad x_{1}^{a_{1}} x_{2}^{a_{1}} x_{3}^{a_{1}}\left(\left(D_{x_{3}, x_{1}}^{a_{3}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{2}, a_{1}}\right)-\left(D_{x_{3}, x_{1}}^{a_{2}, a_{1}}\right)\left(D_{x_{2}, x_{1}}^{a_{3}, a_{1}}\right)\right)\right]
\end{aligned}
$$

As a last by-product, due to Corollary 2.3, we give the following recursive formula of the Schur function $s_{\lambda}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and we illustrate the result by an example.

COROLLARY 2.7. The Schur function $s_{\lambda}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ can be expressed as

$$
s_{\lambda}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\frac{x_{1}^{a_{1}} \times \prod_{2 \leq i \leq n} x_{i}^{a_{1}} B_{i}}{\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)} .
$$

EXAMPLE 2.8. Let $\lambda=(7,5,3,1)$ and $n=4$. Then $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=(1,4,7,10)$ and

$$
\begin{aligned}
\operatorname{det} G_{\{4 ; 1,4,7,10\}}= & x_{1}^{a_{1}} \times \prod_{2 \leq i \leq 4} x_{i}^{a_{1}} B_{i} \\
= & x_{1} x_{2}\left(x_{2}^{3}-x_{1}^{3}\right) x_{3}\left(\left(x_{3}^{6}-x_{1}^{6}\right)-\frac{\left(x_{3}^{3}-x_{1}^{3}\right)\left(x_{2}^{6}-x_{1}^{6}\right)}{\left(x_{2}^{3}-x_{1}^{3}\right)}\right) \\
& \times x_{4}\left(\left(x_{4}^{9}-x_{1}^{9}\right)-\frac{\left(x_{4}^{3}-x_{1}^{3}\right)\left(x_{2}^{9}-x_{1}^{9}\right)}{\left(x_{2}^{3}-x_{1}^{3}\right)}\right. \\
& -\left(\left(x_{3}^{9}-x_{1}^{9}\right)-\frac{\left(x_{3}^{3}-x_{1}^{3}\right)\left(x_{2}^{9}-x_{1}^{9}\right)}{\left(x_{2}^{3}-x_{1}^{3}\right)}\right) \\
& \left.\times\left(\frac{\left(x_{4}^{6}-x_{1}^{6}\right)\left(x_{2}^{3}-x_{1}^{3}\right)-\left(x_{4}^{3}-x_{1}^{3}\right)\left(x_{2}^{6}-x_{1}^{6}\right)}{\left(x_{3}^{6}-x_{1}^{6}\right)\left(x_{2}^{3}-x_{1}^{3}\right)-\left(x_{3}^{3}-x_{1}^{3}\right)\left(x_{2}^{6}-x_{1}^{6}\right)}\right)\right) \\
= & x_{1} x_{2} x_{3} x_{4}\left(x_{4}^{2}+x_{4} x_{3}+x_{3}^{2}\right)\left(x_{4}^{2}+x_{4} x_{2}+x_{2}^{2}\right)\left(x_{4}^{2}+x_{4} x_{1}+x_{1}^{2}\right) \\
& \times\left(x_{3}^{2}+x_{3} x_{2}+x_{2}^{2}\right)\left(x_{3}^{2}+x_{3} x_{1}+x_{1}^{2}\right)\left(x_{2}^{2}+x_{2} x_{1}+x_{1}^{2}\right) \\
& \times \prod_{1 \leq i<j \leq 4}\left(x_{j}-x_{i}\right)
\end{aligned}
$$

so by Corollary 2.7, we see that $s_{(7,5,3,1)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is equal to

$$
\begin{aligned}
& x_{1} x_{2} x_{3} x_{4}\left(x_{4}^{2}+x_{4} x_{3}+x_{3}^{2}\right)\left(x_{4}^{2}+x_{4} x_{2}+x_{2}^{2}\right) \\
& \times\left(x_{4}^{2}+x_{4} x_{1}+x_{1}^{2}\right)\left(x_{3}^{2}+x_{3} x_{2}+x_{2}^{2}\right)\left(x_{3}^{2}+x_{3} x_{1}+x_{1}^{2}\right)\left(x_{2}^{2}+x_{2} x_{1}+x_{1}^{2}\right)
\end{aligned}
$$

As we can see, there are $3^{6}=729$ semistandard $(7,5,3,1)$ tableaux, it seems not easy to write out all of the semistandard $(7,5,3,1)$ tableaux.

References

[1] J. Demmel and P. Koev, The accurate and efficient solution of a totally positive generalized Vandermonde linear system, SIAM J. Matrix Anal. Appl., 27(1)(2005), 142-152.
[2] H.-C. Li and E.-T. Tan, On a special generalized Vandermonde matrix and its LU factorization, to appear in Taiwanese Journal of Mathematics.

[^0]: *Mathematics Subject Classifications: 15A23
 ${ }^{\dagger}$ Department of Mathematical Sciences, National Chengchi University, Mucha, Taipei 11623, Taiwan
 ${ }^{\ddagger}$ Center for General Education, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
 §Department of Mathematical Sciences, National Chengchi University, Mucha, Taipei 11623, Taiwan

