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Abstract

Propagation of elastic waves at a pure shear interface of two half-spaces with
different strain-energy functions is studied. An interesting result of the existence
of two interfacial waves (with no transmitted waves) in the upper half-space is
found. The wave amplitudes are illustrated graphically highlighting the depen-
dence on the finite pure shear deformation and the angle of incidence.

1 Introduction

In [1] Hussain and Ogden considered the effect of simple shear deformation on the
reflection and transmission of homogeneous plane waves at the boundary between two
half-spaces consist of the same material and corresponding to the same strain-energy
functions (see also the related paper [2]). In the present paper the effect of pure shear on
the reflection and transmission of plane waves at the boundary between two half-spaces
corresponding to different strain-energy functions to consist of same incompressible
isotropic elastic material is considered.

The required equations and notations are summarized in Section 2 and in the Sub-
sections the propagation of plane harmonic waves is discussed with reference to the
slowness curves appropriate for the two distinct classes of strain-energy functions.

For the mixed case of the strain-energy functions, the method for finding the am-
plitudes of the reflected, transmitted and interfacial waves is discussed in Section 3.1.
For each angle of incidence a single reflected wave, with angle of reflection equal to
the angle of incidence, is generated when a homogeneous plane (SV) wave is incident
on the boundary from one half-space, and it is accompanied by an interfacial wave.
It is shown that under a certain restriction on the state of deformation a transmitted
(homogeneous plane SV) wave and an interfacial wave are generated for all angles of
incidence. When this restriction does not hold there exists a critical angle such that
(a) in x2 < 0, above which, there is a reflected wave and an interfacial wave but below
which there are two reflected waves (and no interfacial waves), and (b) in x2 > 0,
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68 Propagation of Plane Waves

above which, there is again a transmitted and an interfacial wave but below which
there are two interfacial waves (and no transmitted wave).

The theory in Section 3 is illustrated in Section 4 using graphical results to show the
dependence of the amplitudes of the waves on the angle of incidence for representative
values of the deformation parameters.

2 Basic Equations

Consider an incompressible isotropic elastic material subject to pure shear. Let λ1, λ2, λ3

denote the principal stretches of the deformation. Then, the incompressibility condition
is expressed as

λ1λ2λ3 = 1.

If σi (i = 1, 2, 3) are the principal Cauchy stresses then the pure shear deformation
confined to the (1-2)-plane is given by

λ1 = λ 6= 1, λ2 = λ−1, λ3 = 1 with σ1 6= 0, σ2 = 0,

where a non-vanishing stress σ3 is required to maintain λ3 = 1.
The equation of motion in terms of a scalar function, ψ(x1, x2, t) say, is given by

αψ,1111 + 2βψ,1122 + γψ,2222 = ρ(ψ̈,11 + ψ̈,22), (1)

as in [1], where , i denotes ∂/∂xi, i ∈ {1, 2}, ρ is the mass density, a superposed dot
indicates the material time derivative and the constants α, β, γ are defined by

α = A01212, γ = A02121, 2β = A01111 + A02222 − 2A01122 − 2A01221. (2)

In (2) A0jilk are the components of the fourth-order tensor A0 of instantaneous elastic
moduli (see, for example, Ogden [3]).

The shear and normal components of the incremental nominal traction Σ21, Σ22

on a plane x2 = constant are expressible in terms of ψ through

Σ21 = γψ,22 − (γ − σ2)ψ,11,

−Σ22,1 = (2β + γ − σ2)ψ,112 + γψ,222 − ρψ̈,2.
(3)

2.1 Plane Waves

Consider time-harmonic homogeneous plane waves of the form

ψ = A exp[ik(x1 cos θ + x2 sin θ − ct)], (4)

where A is a constant, c (> 0) the wave speed, k (> 0) the wave number and (cos θ,
sin θ) the direction cosines of the direction of propagation of the wave in the (x1,x2)-
plane. Substitution of (4) into (1) gives

α cos4 θ + 2β sin2 θ cos2 θ + γ sin4 θ = ρc2. (5)
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Equation (5) is a relationship between the wave speed and the propagation direction
in the (x1,x2)-plane and is called the propagation condition. The material constants
are taken to satisfy the strong ellipticity inequalities

α > 0, γ > 0, β > −√
αγ, (6)

and it is clear from (5) that ρc2 > 0 if and only if (6) hold.

Similarly, from (1), for an inhomogeneous plane wave of the form

ψ = Â exp[ik′(x1 − imx2 − c′t)], (7)

we obtain
α− 2βm2 + γm4 = ρ(1 −m2)c′2, (8)

which relates the wave speed c′ to the ‘inhomogeneity factor’ m. Note that the wave
decays exponentially as x2 → −∞(+∞) provided m has positive (negative) real part.

Consider two distinct cases corresponding to different strain-energy functions. For
these either 2β = α+ γ or 2β 6= α+ γ.

2.1.1 Case A: 2β = α+ γ

For this case equations (5) and (8) reduce to

α cos2 θ + γ sin2 θ = ρc2 (9)

and
(m2 − 1)(α− γm2 − ρc′

2) = 0 (10)

respectively.

In terms of the slowness vector (s1, s2) defined by

(s1, s2) = (cos θ, sin θ)/c

equation (9) becomes the slowness curve (by using α/γ = λ4)

λ4s1
2 + s2

2 = ρ, (11)

in the (s1, s2)-space, where ρ is defined by

ρ = ρ/γ. (12)

By using the dimensionless notation (s1, s2) defined by

(s1, s2) ≡ (s1, s2)/
√
ρ, (13)

we can write (11) as
λ4s1

2 + s2
2 = 1. (14)
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2.1.2 Case B: 2β 6= α+ γ

In this case we take the strain-energy function to satisfy β =
√
αγ which was used

by Hussain and Ogden in [1]. Then (5) takes the form

[
√
α cos2 θ +

√
γ sin2 θ]2 = ρc2 (15)

and (8) becomes
(
√
α−√

γm2)2 = ρ(1 −m2)c′2. (16)

The slowness curve corresponding to (15) is given by

[λ2s21 + s22]
2 = s1

2 + s2
2, (17)

in dimensionless form with the notation (13) and ρ defined by (12). We now show
graphically the dependence of the slowness curves on λ for both classes of strain-energy
functions in (s1, s2)-space with reference to (14) and (17) (See Figs. 1-2).
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Figure 1: Slowness curves in (s1, s2)-space for λ = 1.4 with (a) 2β = α+ γ, (b) 2β 6=
α+ γ, (c) the superposition of Figs. in (a) and (b).
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Figure 2: Slowness curves in (s1, s2)-space for λ = 2.5 with (a) 2β = α+ γ, (b) 2β 6=
α+ γ, (c)the superposition of Figs. in (a) and (b).
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3 Reflection and transmission at the interface

Consider the case in which a half-space defined by x2 < 0 is joined to a half-space
x2 > 0. Both are subjected to pure shear deformation. The boundary conditions
corresponding to continuous incremental displacement across the interface x2 = 0 in
terms of the scalar functions ψ and ψ∗, take the forms

ψ,1 = ψ∗
,1, ψ,2 = ψ∗

,2, (18)

respectively on x2 = 0, where an asterisk signifies a quantity in x2 > 0.
In terms of ψ, boundary conditions corresponding to continuous incremental trac-

tion, across the interface x2 = 0 are recast through

Σ21 = Σ∗
21, Σ22,1 = Σ∗

22,1,

on use of (3), in the forms

ψ,11 − ψ,22 = ψ∗
,11 − ψ∗

,22,

(2β + γ)(ψ,112 − ψ∗
,112) + γ(ψ,222 − ψ∗

,222) − ρ(ψ̈,2 − ψ̈∗
,2) = 0.

(19)

Because of the symmetry of slowness curves, with respect to the normal direction
to the interface, the solution comprising the incident wave, a reflected wave and an
interfacial wave in x2 < 0 is written as

ψ = A exp[ik(x1 cos θ + x2 sin θ − ct)] +AR exp[ik(x1 cos θ − x2 sin θ − ct)]
+AR′ exp[ik′(x1 − imx2 − c′t)],

(20)

where R is the reflection coefficient and R′ measures the amplitude of the interfacial
wave. The notations k′, m, c′ are as used in (7) and m has positive real part.

Accordingly, in x2 > 0, the wave solution may be written

ψ∗ = AR∗ exp[ik∗(x1 cos θ∗ +x2 sin θ∗−c∗t)]+AR∗′
exp[ik∗

′
(x1+ im∗x2−c∗

′
t)], (21)

comprising a transmitted and an interfacial wave, where R∗ is the transmission coeffi-
cient and R∗′

is the analogue of R′ for x2 > 0. Note that the interfacial wave decays
as x2 → ∞ provided m∗ has positive real part.

Here Snell’s law takes the form

cos θ/c = 1/c
′
= cos θ∗/c∗ = 1/c∗

′
. (22)

(22) states in particular, that the first components of the slowness vectors for each
homogeneous plane wave interacting at the boundary x2 = 0 are equal.

Thus, by reference to the slowness curves (superimposed) as exemplified in Fig. 1(c)
and Fig.2(c), the range of angles of incidence for which a transmitted wave exists can
be identified. In Fig. 1(c), for example, if the outer curve corresponds to x2 < 0 there
is, for every angle of incidence (i.e. for every s1 associated with the curve) a point on
the inner curve (corresponding to x2 > 0), and hence a transmitted wave.
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In Fig. 2(c) on the other hand, there are values of s1 on the slowness (outer) curve
for x2 < 0 for which there are no corresponding values on the inner slowness curve
(corresponding to x2 > 0), and therefore a range of angles of incidence for which no
transmitted wave exists. This will be discussed further in Section 3.1.

We now examine here the case in which 2β 6= α+ γ (x2 < 0), 2β = α+ γ (x2 > 0).

3.1 2β 6= α + γ (x2 < 0), 2β = α + γ (x2 > 0)

In this case we see from (16), after using Snell’s law cos θ/c = 1/c′, we have

(m2 + t2)[m2(1 + t2) − t2 + λ2(λ2 − 2)] = 0, (23)

where t = tan θ. Note that t should be distinguished from the time variable t used
earlier. m = +it and m = −it are the solutions of (23) corresponding to the incident
and reflected waves respectively. The other solutions are

m = ±
√

1 − (λ2 − 1)2/(1 + t2). (24)

If λ ≤
√

2 the m is real for all θ and the positive solution of (24) corresponds to
an interfacial wave in x2 < 0. If λ >

√
2 then there is a critical value of θ, θc say, for

which m = 0 and this is given by

tc
2 = λ2(λ2 − 2), (25)

where the notation tc = tan θc is used. It follows that m is real for θc ≤ θ ≤ π/2.
For θc < θ ≤ π/2 there is a reflected wave accompanied by an interfacial wave and for
θ = θc the interfacial wave becomes a plane shear (body) wave propagating parallel to
the boundary in x2 < 0 (grazing reflection). When 0 < θ < θc the interfacial wave
is replaced by a second reflected wave with angle of reflection, θ′ say, obtained from
(24) by replacing m by −i tan θ′ to give

t′
2 = {λ2(λ2 − 2) − t2}/(1 + t2),

where t′ = tan θ′.
In x2 > 0, from the counterpart of (10) we see that m∗ = ±1, which yields

an interfacial wave in the half-space x2 > 0 for m∗ = +1. The zeros of the other
quadratic factor correspond to m∗ = i tan θ∗ and m∗ = −i tan θ∗, where m∗ = i tan θ∗

corresponds to a transmitted wave provided tan θ∗ is real and positive. The value of
tan θ∗ is obtained by using the propagation condition (15) and the counterpart of (9)
together with Snell’s law (22). This gives

t∗2 = t2{t2 + λ2(2 − λ2)}/(1 + t2), (26)

and the notation t∗ = tan θ∗ has been introduced.
(26) shows that t∗2 is positive when t2 > λ2(λ2−2) = tc

2 and negative when t2 <
tc

2.Therefore there is a transmitted wave accompanied by an interfacial wave when θ ∈
(θc, π/2] and for θ ∈ (0, θc) the transmitted wave is replaced by a second interfacial
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wave. To best of the knowledge of author, the phenomenon of two interfacial waves (in
the upper half-space), never appeared in linear elasticity. In x2 > 0 at θ = θc there
will be grazing transmission.

The coefficients R, R′, R∗ and R∗′
are determined by using the boundary condi-

tions (18), and (19), with the second equation in (19) taking the form

(2λ2 + 1)ψ,112 − (λ4 + 2)ψ∗
,112 + ψ,222 − ψ∗

,222 − ρ(ψ̈,2 − ψ̈∗
,2) = 0 (27)

in this case, where ρ is given by (12).
Substitution of ψ and ψ∗ from (20) and (21)(with m∗ = 1) in (18), first equation

in (19) and (27) leads to

1 +R+ R′ = R∗ +R∗′
,

t(1 −R) − imR′ = t∗R∗ + iR∗′
,

(1 + R)(t2 − 1) − (1 +m2)R′ = (t∗2 − 1)R∗ − 2R∗′
,

(R − 1)it(m2 + 1) + R′m(t2 − 1) = −R∗it∗(2 −m2t2 + t∗2) − R∗′
(t∗2 − 1).

(28)

In the latter equation use has been made of (23) and (26) in order to simplify the
coefficients. In these equations, for given t, m is obtained from (24) and t∗ from
(26). The values of R, R′, R∗, and R∗′

are obtained from the solution of (28). The
resulting expressions are not given here, but using Mathematica [4], graphical results
showing the dependence of |R|, |R′|, |R∗|, and |R∗′| on θ and different values of λ
are given in Section 4.

4 Numerical Results

Graphical results for a selection of values of λ are given in Figs. (3-6). With reference
to the slowness curves (superimposed) in Fig. 1(c), which is the relevant one for the
Figs. (3-6)(a), it can be seen that there is one reflected wave, one transmitted wave
and two interfacial waves for each possible angle of incidence when 2β 6= α + γ (x2 <
0), 2β = α + γ (x2 > 0). At θ = π/2, incident wave is transmitted fully, as |R| =
|R′| = |R∗′ | = 0. At grazing incidence ( θ = 0 ), there are no interfacial waves.

In respect of Figs. (3 - 6)(c & d), from the discussion of slowness curves in Fig. 2(c)
it is apparent that there are two interfacial waves in x2 > 0 and two reflected waves
in x2 < 0 for 0 ≤ θ ≤ θc. A reflected wave with an interfacial wave (in x2 < 0 ) and
a transmitted wave along with an interfacial wave (in x2 > 0) exist for θc ≤ θ ≤ π/2,
where the critical angle θc is given by (25). For λ = 1.5, 1.6, 1.73, and2.5 the value
of θc = 0.512, 0.962, 1.25, and 1.53 respectively. Note the continuity of graphs at
θ = θc. Each of |R|, |R∗|, and |R∗′ | vanish at one value of θ when λ >

√
2.

In Figs. (4-6) the change in the vertical scales must be noted. In addition, an in-
teresting conclusion is the graphs of |R|, |R′|, |R∗|, and |R∗′ | are varying significantly
by a minor change in the stretch λ, as shown in Figs. (3 - 6)(a, b, & c). In general the
maximum values of |R|, |R′|, |R∗|, and |R∗′| increase as stretch increases.
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Figure 3: Plots of |R| (in x2 < 0 ) against θ ( 0 ≤ θ ≤ π/2) with the following values
of λ: (a) 1.4, (b)

√
2, (c) 1.5, (d) 2.5.
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Figure 4: Plots of |R′| (in x2 < 0 ) against θ ( 0 ≤ θ ≤ π/2) with the following values
of λ: (a) 1.4, (b)

√
2, (c) 1.5, (d) 2.5.
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Figure 5: Plots of |R∗| (in x2 > 0 ) against θ ( 0 ≤ θ ≤ π/2) with the following values
of λ: (a) 1.4, (b)

√
2, (c) 1.5, (d)1.73.
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Figure 6: Plots of |R∗′| (in x2 > 0 ) against θ ( 0 ≤ θ ≤ π/2) with the following values
of λ: (a) 1.4, (b) 1.45, (c) 1.6, (d) 1.73.
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