
Applied Mathematics E-Notes, 8(2008), 25-29 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

Unique Periodic Solution Of ES-S Model∗

Jin-guo Lian and Hong-kun Zhang†

Received 14 November 2006

Abstract

In this paper, coincidence degree method is employed to prove existence of T -
periodic solutions in D for a non-autonomous system which is called ES-S model,
where D is a strictly positively invariant region of ES-S model. Furthermore,
Floquet theory is provided to analyze uniqueness of a T -periodic solution of ES-S
model.

1 Introduction

Schnakeberg model [7] is
{

ut(r, t) = d1∆u(r, t) + a − u(r, t) + u2(r, t)v(r, t), r ∈ Λ,
vt(r, t) = d2∆v(r, t) + b − u2(r, t)v(r, t), r ∈ Λ

with boundary conditions

n(r) · ∇u(r, t) = n(r) · ∇v(r, t) = 0

for r ∈ ∂Λ, where n(r) is the unit outward normal vector field along the boundary of
0Λ = [0, l]× [0, l] (l > 0) and a, b, d1, d2 are positive constants. If we consider the case
when reactants are well stirred, then the diffusion terms disappear. In this case, we
get the simplified Schnakeberg (S-S) model [5, p. 156]

{
u̇ = a − u + u2v
v̇ = b − u2v.

If in S-S model, we allow the coefficients a and b to be positive continuous T -periodic
functions of t with period T > 0, then the corresponding model is called ES-S model.
Similarly, Schnakeberg model will be called ES model, if we replace constants a and b
by positive continuous T -periodic functions.

Our goal is to concentrate on the study of periodic patterns of ES model. This
is a job different from the study of pattern formation of Schnakeberg model by using
Turing’s Instability [5, p.380]. In order to study the pattern formation of ES model,
we need to find a T -periodic solution (a source of the T -periodic pattern) for ES-S
model in a certain patch.
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2 Main Results

x(t) =
(

u(t)
v(t)

)
and F (t, x(t)) =

(
a − u + u2v

b − u2v

)
.

Then ES-S model is defined by

ẋ(t) = F (t, x(t)) (1)

with conditions
1.1 < a(t) < 1.6, 0.04 < b(t) < 0.1. (2)

LEMMA 1. There exists a strictly positively invariant region

D = {(u, v) ∈ R2 : 1 ≤ u ≤ 2, 0.01 ≤ v ≤ 0.1}

for ES-S model given by (1) with conditions (2).
Linearize the system (1) with respect to its a T -periodic solution x(t) = (u(t), v(t))T ∈

D for any t ∈ R (if such a T -periodic solution exists), then we get

Ẇ (t) = A(t)W (t), (3)

where

A(t) = F ′
x(t) =

(
−1 + 2u(t)v(t) u2(t)
−2u(t)v(t) −u2(t)

)
.

W (t) =
(

w1(t)
w2(t)

)

is a variation vector field along the trajectory x(t).
PROPOSITION 2. Linear system (3) satisfies tr(A(t)) < 0 and det(A(t)) > 0 for

any t ∈ R.
The similar proofs of Lemma 1 and Proposition 2 are in [3]. Now, let us state the

main result:
THEOREM 3. For ES-S model with conditions (2), there exists only one T -periodic

solution x0(t) in D.

3 Preliminaries

Let X = {x ∈ C([0, T ]) |x(0) = x(T )}. Clearly X is a Banach space with the supremum
norm. Define Lx(t) = ẋ(t) with domain

Dom(L) = {x ∈ C1([0, T ]) |x(0) = x(T )}.

It is easy to verify that Dom(L) is contained in X , the range of L is Im(L) = {z(t) ∈
X |

∫ T

0
z(t)dt = 0} and L is a Fredholm mapping of index 0. Let

Θ = {x ∈ Dom(L) |x(t) ∈ D, ∀t ∈ [0, T ]}. (4)
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Define F1 : Θ → X by F1(x) = F (·, x(·)) and H1(x(t)) = F1(x(t)) − Lx(t).
Now, construct a homotopy family

Hλ : (Dom(L) ∩ Θ) × [0, 1] → X

to be of the form
Hλ(x(t)) = Fλ(x(t)) − Lx(t), (5)

where Fλ : Θ × [0, 1] → X with

Fλ(x(t)) =
(

ã(t) − u(t) + u2(t)v(t)
b̃(t) − u2(t)v(t)

)
. (6)

Here ã(t) = (1 − λ)1.4 + λa(t), and b̃(t) = 0.05(1 − λ) + λb(t) with λ ∈ [0, 1]. It is
easy to verify that Fλ : Θ× [0, 1] → X is L-compact. For more details of degree theory,
see [4, Ch. I–IV].

LEMMA 4. Given λ ∈ [0, 1], if x(t) ∈ Θ is a T -periodic solution of the system

ẋ(t) = Fλ(x(t)), (7)

then ∂D is an a priori bound of x(t).
PROOF. Clearly, ã and b̃ satisfy conditions (2). System (7) is an ES-S model.

By Lemma 1, D is still a strictly positively invariant region of system (7). None of
T -periodic solutions of (7) in Θ can touch the boundary of D.

COROLLARY 5. 0 6 ∈Hλ((Dom(L) ∩ ∂D) × [0, 1]).
LEMMA 6. DL(H0(x(t), Θ) = DB(H0(x(t),D) = 1, where DL denote Leray-

Schauder degree and DB denote Brouwer degree.
For a similar proof, see [2].
LEMMA 7. For system (3) with conditions (2), zero is the only T -periodic solution.
PROOF. Suppose (3) has a non-trivial T -periodic solution called W1(t). By Propo-

sition 2 and Floquet theory [1, p. 93-105], its orbit Γ is an orbitally asymptotically
stable. For s ∈ R, sW1(t) is also a T -periodic solution of (3). Then orbit of sW1(t)
can not be attracted to Γ for any s ∈ R. This leads a contradiction to the orbital
asymptotic stability of Γ.

REMARK 8. For the linear system (3), if tr(A(t)) does not change sign in some
simply connected region E ⊂ R2, then (3) has no non-trivial periodic solution in
E; since the system (3) is a linearization of an non-autonomous system, Bendixson’s
Criteria [6, p. 264] cannot be used to prove Lemma 7.

4 Proof of Theorem 3

PROOF. (Existence) Combine Lemma 4, Corollary 5 and Lemma 6, by a general
existence theorem of the Leray-Schauder type, we get

DL(H1(x(t)), Θ) = DL(H0(x(t)), Θ) = DB(F0(x(t)),D) = 1,
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which implies that there at least exists one T -periodic solution x0(t) = (u0(t), v0(t))T

of ES-S model in D. If a and b are constants, it is easy to show that there is only
one trivial T -periodic solution x0 ∈ int(D), otherwise, we can easily verify that x0(t)
is a nontrivial T -periodic solution of ES-S model in D by substituting x0(t) into ES-S
model.

(Uniqueness) Define CT = {x(t) ∈ Θ|x(t) satisfies (1) with conditions (2)}. Since
x0(t) ∈ CT , CT is not an empty set. If a and b are constants, there is only one constant
solution in CT .

If one of a(t) and b(t) is a non-trivial T -periodic function, then x0(t) ∈ CT is a
non-trivial T -periodic solution. Assume CT is not a singleton; we pick

x1(t) =
(

u1(t)
v1(t)

)
, x2(t) =

(
u2(t)
v2(t)

)

in CT and substitute them into (1) to get

ẋi(t) = F (t, xi(t)), i = 1, 2. (8)

Define z(t) = x1(t) − x2(t). By the mean value theorem, we get

ż(t) = z(t)
∫ 1

0

F
′

x[t, x2(t) + θ(x1(t) − x2(t))]dθ (9)

and ∫ 1

0

F
′

x[t, x2(t) + θ(x1(t) − x2(t))]dθ =
(

−1 + 2n(t) m(t)
−2n(t) −m(t)

)
,

where

m(t) =
∫ 1

0

[v2(t) + θ(v1(t) − v2(t))]2dθ,

n(t) =
∫ 1

0

[u2(t) + θ(u1(t) − u2(t))][v2(t) + θ(v1(t) − v2(t))]dθ.

Since
n(t) =

1
2
(v2(t)u1(t) + u2(t)v1(t)) +

1
3
(u1(t) − u2(t))(v1(t) − v2(t))

and
m(t) =

1
3
(v1(t) − v2(t))2 + v2(t)v1(t),

tr

(∫ 1

0

F
′

x[t, x2(t) + θ(x1(t) − x2(t))]dθ

)
= −1 − m(t) + 2n(t)

= −1 − 1
3
v1(t)2 −

1
3
v2(t)2 −

1
3
v1(t)v2(t)

+
1
3
v2(t)u1(t) +

1
3
v1(t)u2(t) +

2
3
v1(t)u1(t) +

2
3
v2(t)u2(t).

Notice the following facts:

1
3
v2(t)u1(t) +

2
3
v2(t)u2(t) ≤

v2(t)
3

(u1(t) + 2u2(t)) ≤ 2v2(t) ≤ 0.2,
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1
3
v1(t)u2(t) +

2
3
v1(t)u1(t) ≤

v1(t)
3

(u2(t) + 2u1(t)) ≤ 2v1(t) ≤ 0.2.

It follows that

tr

(∫ 1

0

F
′

x[t, x2(t) + θ(x1(t) − x2(t))]dθ

)
< 0. (10)

This implies that the zero solution is the only one T -periodic solution for (9) by Remark
8. Hence, x1(t) = x2(t). CT is a singleton.

5 Future Works

In this paper, we proved the existence and uniqueness of the periodic solution x0(t) of
ES-S model. This establishes a foundation for further studying patterns of ES model.
Of course, the problem mentioned here is still open, the investigation of this question
is currently underway.
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