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Abstract

A variational formulation is given for the solution of Laplace’s equation within
an infinitely deep rectagular gap due to a source charge existing in a half space
outside the gap. The problem arises in the modeling of the magnetic recording
process. Ad hoc Fourier based solutions and finite element formulations are used
by engineers to approximate solutions of the problem. However, despite the rel-
atively simple equation and geometry, the appropriate variational formulation of
the problem has never been given. The variational form is essential to confirm
the veracity of numerical schemes applied to the problems as well as to provide
the basis for numerical analysis of the schemes. The formulation will require two
Dirichlet to Neumann maps. One map characterizes the interface from the half
space to the gap. The second map truncates the solution domain within the gap
itself. The maps will allow the problem to be formulated on a finite rectangular
domain while properly representing the influence of the source charge which is
external to the solution domain. The paper will offer the proper formulation of
these boundary conditions and provide a proof of the existence and uniqueness of
the solution to the variational problem.

1 Introduction

In computer hard drives, information is stored on a disk of magnetic material. The
information is stored in concentric circles called tracks and each track is divided into
sectors. In each sector a magnetization is printed with one of two distinct orientations.
If the orientation changes between sectors in a track, this represents the binary digit 1.
If there is no change in orientation this is the binary digit 0. The magnetization of the
media on the disk creates a magnetic charge distribution ρ which induces a magnetic
potential φ in the surrounding region. Reading the information on the disk requires
detection the potential with the use of a magneto-resistive material. The magneto-
resistive material is placed between two magnetic shields above the disk media. The
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18 Solution of Laplace Equation

shields have infinite permeability and serve to focus the potential produced by the
media magnetization onto the sensor [7].

The paper will give a description of a two dimensional model of the situation de-
scribed above. Some simplifying assumptions will be made regarding the geometry of
the problem. The solution of the problem is a magnetic potential φ which satisfies
Laplace’s equation 4φ = 0. The unique aspect of the model is the necessity of two
special boundary conditions which allow the problem to be limited to a finite domain.
The paper will provide the proper formulation of the boundary conditions based on the
Fourier theory solution of the problem. The Fourier based approach for the problem
is given in [5] and a similar solution is given in [3]. The same basic approach is used
for the Helmholtz equation in [1]. None of the sources provide a mathematical proof
of existence and uniqueness of the solution, but the ideas can be used to develop the
proper mathematical formulation of the problem.

Once the boundary conditions are established, a variational formulation in the
finite domain will be provided. The proof of existence and uniqueness of the solution
of the variational formulation is also given. The proof involves methods from functional
analysis. The existence and uniqueness proof is not only of pure mathematical interest.
It is also important since it will provide the foundation for the analysis of numerical
methods which are applied to compute approximate solutions of the model such as
finite elements and finite Fourier methods.

2 Problem Description

The analysis of the problem will be done in two dimensions. Therefore the assumption
is made that there is minimal variation in the z-direction. In the xy-plane, the upper
half plane (y > 0) consists of a magnetic shield with an empty gap from x = 0 to
x = G. The gap is where a sensor would be placed to detect variations in the potential
produced by a charge outside the gap. We will refer to the region in the upper half plane
inside the gap as region I. (See figure 1) In the lower half space (y < 0) there will be no
material but only a magnetic charge distribution. The magnetic charge ρ represents
information on a magnetic media below the gap. We will refer to the entire lower half
plane as region II. The assumption is made that the variations of the magnetic charge
below the gap are very small with respect to the size of the magnetic shields. The size
of the shields justifies the assumption that the gap is infinitely deep in the y-direction
as well as infinitely wide in the x-direction (see figure 1). In actual magnetic recording
there is a very thin sensor placed in the gap between the magnetic shields which is used
to detect the potential produced from the charge outside the gap and hence read the
stored information. As a final assumption, the material of the sensor is not considered
in the gap region.

Note that the for any region not containing a magnetic charge, the magnetic poten-
tial will satisfy Laplace’s equation 4φ = 0. Also, note that the shields do not support
a magnetic potential. Therefore, any boundary with the shields will have a Dirichlet
boundary condition φ = 0. Denote the potential in region I as φI and the potential
below the shields in region II as φII . A special boundary condition will be provided at
the interface y = 0. The boundary condition will ensure continuity of the potential and
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its normal derivative across the interface. In addition, an artificial boundary will be
placed in the gap at some positive value y = b inside the gap in region I. The artificial
boundary will create a finite rectangular domain on which the analysis of the problem
will be done. The region within the shield gap, above the interface and below the
artificial boundary will be denoted S = [0, G]× [0, b]. The boundary of the region S is
denoted Γ. In particular, the portion of the boundary at y = b is denoted Γ1 while the
portion of the boundary at y = 0 is denoted Γ2. The goal of the paper is to describe
the proper formulation of the differential equation and boundary conditions which φI

satisfy in S and give a proof that the formulation has a unique solution.

Artificial Boundary 
         (y=b)

Interface (y=0)

Shield ϕ=0

Charge ρ(x,y)

Region I (y>0)

Region II (y<0)

x=0 x=G

Shield ϕ=0

y

x

Figure 1. Diagram of solution S domain for the variational problem

3 Boundary Conditions

The most interesting aspect of the method is what happens at Γ2 which is the transition
from the empty lower half space below the shields to the gap between the shields. In
region I, the solution will have the form

φI =
∞∑

n=1

An sin
(nπx

G

)
e−(nπ

G )y (1)

Since the support of the potential in the x-direction, is nonzero only in the interval
from 0 to G, a Fourier sine series can be used [6]. On the other hand in region II
outside the gap and above the charge distribution, the solution has the form

φII =

+∞∫

−∞

(
B(kx)e−κy + C(kx)eκy

)
e2πikxx dkx (2)

(Where κ = |2πkx|) Since the support in the x direction is now infinite, a Fourier
transform is used instead of a Fourier series to represent the solution [6]. The interesting
part of the problem comes from coupling the two forms of the solution together at the
gap interface Γ2.

We can compute the potential without the presence of shields (this will be denoted
by φ0) exactly using a standard Green’s function [2]. The potential φo in terms of the
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Fourier components is

φ0 =

+∞∫

−∞

B(kx)e−κy dkx. (3)

Note that this form is due to the fact that the quantity φo must decay as y > 0 increases
to be physically reasonable.

Also, note that the potential reflected from the bottom of the shields into region II
(φr) is of the form

φr =

+∞∫

−∞

C(kx)eκy dkx (4)

Note that φr must decay as y < 0 decreases in order to be physically reasonable.
Also, note that C is an unknown quantity unlike B which can be computed directly.
The total solution in region II is simply the superposition of the potentials φ0 and φr.
Examine the interface between the gap in region I and the lower half-plane of region
II. The two forms of the solution will satisfy some standard continuity conditions.

First, the potential is continuous at the gap interface which implies the following
equation

φI |y=0 = φII |y=0 . (5)

Second, the normal derivative
(

∂
∂y

)
is continuous across the gap interface. Hence, we

have the equation
∂φI

∂y

∣∣∣∣
y=0

=
∂φII

∂y

∣∣∣∣
y=0

(6)

Using the forms of the solution in the respective regions (1) and (2) the boundary
condition at the interface between region I and region II can be found.

The first continuity equation gives the following:

∞∑

n=1

An sin
(nπx

G

)
=

+∞∫

−∞

(B + C) e2πikxx dkx (7)

or
∞∑

n=1

An sin
(nπx

G

)
= F−1

x (B + C) (8)

Taking the Fourier Transform in the x-direction of both sides gives

∞∑

n=1

AnFx

(
sin

(nπx

G

))
= (B + C) (9)

or
Fx(φI) = B + C (10)

Note that both the An’s and C are unknown. Hence, it will be necessary to eliminate
C and leave the expression in terms of the known quantity B.
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The second continuity condition gives the following:

∞∑

n=1

(
−nπ

G

)
An sin

(nπx

G

)
=

+∞∫

−∞

(−κB + κC) e2πikxx dkx (11)

or
∂φI

∂y
=

∞∑

n=1

(
−nπ

G

)
An sin

(nπx

G

)
= F−1

x (−κB + κC) (12)

Equation (11) is the boundary condition which will be enforced on Γ2. On Γ1 the
solution φI will be of the form

φI =
∞∑

n=1

An sin
(nπx

G

)
e−(nπ

G )y (13)

Therefore, on the artificial boundary Γ1

∂φI

∂y
=

∞∑

n=1

(
−nπ

G

)
An sin

(nπx

G

)
e−(nπ

G )b (14)

Both the expressions for ∂φI

∂y will serve as the basis for the boundary conditions in the
variational formulation of the problem given below.

4 Variational Formulation

The variational approach to the problem not only provides a basis for mathematical
proofs of existence and uniqueness, but also provides the foundation for robust numer-
ical methods including the finite element method. We look for a unique weak solution
u of the Laplace equation 4u = 0 in S using the boundary conditions described above
in an appropriate space of functions.

Look for a solution in the rectangular region S from x = 0 to x = G and y = 0 to
y = b. In order to enforce the Dirichlet conditions u (0, y) = u (G, y) = 0, the problem
is restricted to the space of functions

H̃1
0 (S) =

{
w ∈ H1(S) | w(0, y) = w(G, y) = 0

}
(15)

The weak form of the problem is constructed as follows:

1. Multiply both sides of the Laplace equation 4u = 0 equation by a function w
in H̃1

0 (S) and integrate over S ∫

S

4uw dS = 0 (16)

2. Apply integration by parts to arrive at

−
∫

S

∇u · ∇w dS +
∫

Γ

∂u

∂n
w dΓ = 0 (17)
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Before moving on to the variational solution, examine the boundary term of the weak
form of the equation. In particular, this term is where we insert the conditions described
in section 3.

Note that w(0, y) = w(G, y) = 0, but boundary conditions on Γ1(y = b) and
Γ2(y = 0) must also be specified. Hence, a Dirichlet to Neumann map T1(u) is defined
on Γ1 using equation (14),

∂u

∂n
= T1(u) =

∞∑

n=1

(
−nπ

G

)
An sin

(nπx

G

)
e−(nπ

G )b (18)

On the boundary Γ2, refer back to equation (11):

∂u

∂y
= F−1

x (−κB + κC) (19)

Note that (10) is solved for C and then substituted into (12) to arrive at

∂u

∂y
= F−1

x (−2κB + κFx(u)) (20)

or
∂u

∂y
= F−1

x (κFx(u)) + g (21)

where g = −2F−1
x (κB).

Hence, a Dirichlet to Neumann map T2(u) is defined on Γ2 as the following:

∂u

∂n
= T2(u) − g = −F−1

x (κFx(u)) − g (22)

Now, put the maps T1(u) and T2(u) into the weak form of the equation (17)

−
∫

S

∇u · ∇w dS +
∫

Γ1

T1(u)w dΓ +
∫

Γ2

T2(u)w dΓ =
∫

Γ1

gw dΓ (23)

The weak form of the equation defines a bilinear form

a(u, w) = −
∫

S

∇u · ∇w dS +
∫

Γ1

T1(u)w dΓ +
∫

Γ2

T2(u)w dΓ (24)

and a bounded linear functional

〈g, w〉 =
∫

Γ1

gw dΓ (25)

The solution of the variational form of the problem is a function u ∈ H̃1
0 (S) such that

a(u, v) = 〈g, v〉 (26)

for all v ∈ H̃1
0 (S).



J. Fleming 23

5 Existence and Uniqueness

The weak or variational formulation is used for a proof of existence and uniqueness of
the problem at hand.

THEOREM. The variational problem (26) has a unique solution in H̃1
0 .

PROOF. First, it must be shown that a(u, v) is a continuous bilinear form on
H̃1

0 (S). That is to say
a(u, v) ≤ C‖u‖H̃1

0(S)‖v‖H̃1
0 (S) (27)

Next, establish coercivity of the bilinear form which means

a(u, u) ≥ C‖u‖2
H̃1

0 (S)
(28)

Using the previous two facts, apply the Lax-Milgram Lemma to establish that there
exists a unique solution to the differential equation in H̃1

0 (S) [4]. (From this point on
‖ · ‖ = ‖ · ‖H̃1

0 (S).)
First, establish the continuity of a(u, v). Using the Cauchy-Schwartz inequality

∫

S

∇φ · ∇v dS ≤ C‖u‖‖v‖ (29)

On the boundary Γ1, let

u =
∞∑

n=1

An sin
(nπx

G

)
e−(nπ

G )b

and

v =
∞∑

n=1

Bn sin
(nπx

G

)
e−( nπ

G )b.

By orthogonality, the Cauchy-Schwartz inequality and the Trace Theorem
∫

Γ1

T1(u)v dΓ =
∞∑

n=1

nπ

G
e−2(nπ

G )bAnBn ≤ C‖u‖‖v‖. (30)

Now, by Parseval’s Theorem, Cauchy-Schwartz inequality and the Trace Theorem

∫

Γ2

T2(u)v dΓ =

+∞∫

−∞

κFx(u)F−1
x (v) dkx ≤ C‖u‖‖v‖ (31)

Thus, we have continuity
a(u, v) ≤ C‖u‖‖v‖ (32)

Now, prove the coercivity of the bilinear form a(u, v):

−a(u, u) =
∫

S

∇u2 dS +
∞∑

n=1

nπ

G
An

2 +

+∞∫

−∞

κFx(u)2 dkx (33)
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Poincaré’s inequality indicates that
∫

S

∇u2 dS ≥ C‖u‖2 (34)

Since the other two terms are clearly positive, we have the result

a(u, u) ≥ C‖u‖2 (35)

Therefore, the conditions of Lax-Milgram Lemma are satisfied, and the existence of a
unique solution u ∈ H̃1

0 (S) is guaranteed.

6 Conclusion

The simplified model of a magnetic recording process leads to a formulation which
requires the solution of Laplace’s equation in an infinitely deep gap. The solution is
a magnetic potential which is induced from a charge existing entirely outside the gap.
The formulation requires two special boundary conditions to reduce the problem to a
finite solution domain. The paper has shown the proper formulation of the boundary
conditions as well as a proof of the existence and uniqueness of the solution using a
variational formulation.
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