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Abstract

We deal with bicentric n-gons where instead of incircle there is excircle. We
also consider system of equations involving the different quantities associated with
the n-gons, the circumcircles and the excirles.

1 Introduction

A bicentric polygon is a circumscribed polygon which also has an inscribed circle (a
circle that is tangent to each side of the polygon). In [3], the following theorem is
announced.

THEOREM A ([3, Theorem 1]). Let A1 . . .An be any given bicentric n–gon. Let

R0 = radius of circumcircle of A1 . . .An,

r0 = radius of incircle of A1 . . .An, and
d0 = distance between centers of circumcircle and incircle.

Then there are lengths R2, d2, r2 such that

R2
2 + d2

2 − r2
2 = R2

0 + d2
0 − r2

0, (1)
R2d2 = R0d0, (2)

R2
2 − d2

2 = 2R0r2. (3)

It is not difficult to see that the positive solutions R2`, d2`, r2`, ` = 1, 2 in R2, d2, r2

of the above system of equations satisfy

R2
21 = R0

(
R0 + r0 +

√
(R0 + r0)2 − d2

0

)
,

R2
22 = R0

(
R0 − r0 +

√
(R0 − r0)2 − d2

0

) (4)
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10 Equations Related to Bicentric Polygons

d2
21 = R0

(
R0 + r0 −

√
(R0 + r0)2 − d2

0

)
,

d2
22 = R0

(
R0 − r0 −

√
(R0 − r0)2 − d2

0

)
,

(5)

r2
21 = (R0 + r0)2 − d2

0

r2
22 = (R0 − r0)2 − d2

0 .
(6)

Also, it is easy to check that

R2
21 d2

21 = R2
22 d2

22 = R2
0d

2
0, R2

21 − d2
21 = 2R0r21, R2

22 − d2
22 = 2R0r22 . (7)

By some straightforward calculations we conclude from (1)–(3) that

R0 =
R2

2 − d2
2

2r2
, d0 =

2R2r2d2

R2
2 − d2

2

, (8)

r2
0 = −(R2

2 + d2
2 − r2

2) +
(

R2
2 − d2

2

2r2

)2

+
(

2R2d2r2

R2
2 − d2

2

)2

:= ϕ(R2, d2, r2) . (9)

We will need these important formulæ frequently in the sequel.
Moreover, replace R0, d0, r0 in (1), (2) and (3) respectively by R21, d21, r21. Then

the solution in R2, d2, r2 of the transformed system is given by

R2
211 = R21

(
R21 + r21 +

√
(R21 + r21)

2 − d2
21

)
,

R2
212 = R21

(
R21 − r21 +

√
(R21 − r21)

2 − d2
21

)
,

d2
211 = R21

(
R21 + r21 −

√
(R21 + r21)

2 − d2
21

)
,

d2
212 = R21

(
R21 − r21 −

√
(R21 − r21)

2 − d2
21

)
,

r2
211 = (R21 + r21)2 − d2

21 ,

r2
212 = (R21 − r21)2 − d2

21 .

By repeating the above procedure we can take, e.g. the lengths R211, d211, r211 instead
of the lengths R0, d0, r0 in the system (1)–(3).

Let us remark here that in what follows, only R21, d21, r21 and R211, d211, r211, will
be considered throughout this article.

In [3] two conjectures are posed, which are equivalent to the following conjecture.
CONJECTURE. Let Fn(R0, d0, r0) = 0 be the Fuss’ relation for a bicentric n–gon,

where one circle is inside the other. Then Fuss’ relation F2n(R2, d2, r2) = 0 for the
depending bicentric 2n–gon can be obtained by taking

Fn

(R2
2 − d2

2

2r2
;

2R2r2d2

R2
2 − d2

2

; ϕ(R2, d2, r2)
)

= 0,

compare (8)-(9). Conversely, starting with the Fuss’ relation F2n(R2, d2, r2) = 0 one
obtains Fn(R0, d0, r0) = 0 by taking (4)-(6) into account.
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We have to point out that testing the validity of this conjecture for different positive
integers n ≥ 3, we prove it for numerous values of n.

In this article it is shown that the achievements of Theorem A remain valid when
one circle is not inside the other, that is, when instead of incircle there is the excircle.
In this respect let us remark that Richolet [5], using some results which originate back
to Jacobi [2], showed how certain relations valid for bicentric 2n–gons can be obtained
from depending relations for bicentric n–gons. Richolet’s mathematical tools involve
elliptic functions. However, here we expose a method (rather elementary one) using
Theorem A, to deduce some equations for bicentric 2n-gon by adequate relations for
bicentric n–gon.

2 Bicentric n-gons and 2n-gons with Excircle

Generally speaking in the case when the bicentric n-gon has excircle (instead of incir-
cle), very difficult calculations could appear. Therefore we shall restrict ourselves to
the case when n is not large and use the following four well known facts concerning
bicentric n-gons.

(i) If R0, d0, r0 are lengths (in fact positive numbers) such that

d2
0 − R2

0 = 2r0R0, d0 + r0 > R0, d0 + R0 > r0, (10)

then there is triangle A0B0C0 such that

R0 = radius of circumcircle of ∆A0B0C0,

r0 = radius of excircle of ∆A0B0C0,

d0 = distance between centers of circumcircle and excircle.

(ii) If R0, d0, r0 are lengths such that

R2
0 − d2

0 = 2d0r0, d0 + r0 > R0, d0 + R0 > r0, (11)

then there is bicentric hexagon A0B0C0D0E0F0 such that

R0 = radius of circumcircle of A0B0C0D0E0F0,

r0 = radius of excircle of A0B0C0D0E0F0,

d0 = distance between centers of circumcircle and excircle.

(iii) If R0, d0, r0 are lengths such that

R0 = d0, 2R0 > r0, (12)

then there is bicentric quadrilateral A0B0C0D0 such that

R0 = radius of circumcircle of A0B0C0D0,

r0 = radius of excircle of A0B0C0D0,

d0 = distance between centers of circumcircle and excircle.
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(iv) If R0, d0, r0 are lengths such that

R4
0 − 2d2

0R
2
0 − 4d0r

2
0R0 + d4

0 = 0, d0 + r0 > R0, d0 + R0 > r0 (13)

then there is bicentric octagon A0B0C0D0E0F0G0H0 such that

R0 = radius of circumcircle of A0B0C0D0E0F0G0H0,

r0 = radius of excircle of A0B0C0D0E0F0G0H0,

d0 = distance between centers of circumcircle and excircle.

Now we are ready to formulate our first main result.
THEOREM 1. Let R0, d0, r0 be lengths such that

d0 + R0 > r0 or d0 + r0 > R0 . (14)

Then respectively
d21 + R21 > r21 or d21 + r21 > R21. (15)

PROOF. By direct calculation, using the relations (4)-(6) in Theorem A and by

R21 d21 = R0d0, (16)

which follows from (7), we can write

R0 + d0 > r0 ⇒ (R0 + d0)2 > r2
0

⇔ R2
0 + 2R0d0 + d2

0 > r2
0

⇔ 2R0(R0 + r0) + 2R0d0 > R2
0 + 2R0r0 + r2

0 − d2
0

⇔ d2
21 + 2d21R21 + R2

21 > r2
21

⇔ d21 + R21 > ± r21. (17)

Now, bearing in mind that our model contains the excircle, we easily drop the negative
sign on the last inequality, completing the proof of the first statement in (15).

Next, assuming d0+r0 > R0, once more with the aid of (4)-(6), (16) and the excircle
properties, we easily find that

d0 + r0 > R0 or r0 > R0 − d0 ⇒ r2
0 > (R0 − d0)2

⇔ R2
0 + 2R0r0 + r2

0 − d2
0 > 2R0(R0 + r0) − 2R0d0

⇔ r2
21 > 2R0(R0 + r0) − 2R0d0

⇔ r2
21 > R2

21 + d2
21 − 2R21d21

⇒ d21 + r21 > ±R21 . (18)

Cancelling the negative sign on the last inequality, we obtain the proof.
THEOREM 2. Let R0, d0, r0 be the lengths such that (10) holds, that is,

d2
0 − R2

0 = 2r0R0, d0 + r0 > R0, d0 + R0 > r0.
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Then there is bicentric hexagon A0B0C0D0E0F0 such that

R21 = radius of circumcircle of A0B0C0D0E0F0,

r21 = radius of excircle of A0B0C0D0E0F0,

d21 = distance between centers of circumcircle and excircle.

PROOF. According to (11), we have to prove

R2
21 − d2

21 = 2d21r21 . (19)

To do this, we bear in mind the first relations in (4)-(6). Then

d2
0 − R2

0 = 2r0R0

⇔ r2
0 = (R0 + r0)2 − d2

0

⇒ R0 = R0 + r0 −
√

(R0 + r0)2 − d2
0

⇔ R2
0 = d2

21

⇔ R2
0[(R0 + r0)2 − d2

0] = d2
21 r2

21

⇔ 2R0

√
(R0 + r0)2 − d2

0 = ± 2d21r21

⇒ R2
21 − d2

21 = 2d21 r21 . (20)

Here R2
0 = d2

21 can be concluded by the fact that only the lengths (·)1 is considered,
and that there is the excircle case; while the last equality is obtained by rejecting the
negative sign in the previous equality.

In the following examples, in calculating tangent lengths for A1 . . .An, we will apply
the well–known formula

(t2)1,2 =
(R2 − d2)t1 ±

√
D

r2 + t21
, (21)

where
D = t21(R

2 − d2)2 + (r2 + t21)
[
4d2R2 − r2t21 − (R2 + d2 − r2)2

]
,

and R, r, d denote the radii of circumcircle, incircle and the distance between centers of
these two circles respectively. If t1 is given, then the consequent t2’s role will be played
by t21 or t22. The same relation is valid when instead of incircle the excircle appears.

Of course, if A1 . . .An is a bicentric n-gon, where instead of incircle there is excircle,
then tangent-length ti is given by ti = |AiPi|, where Pi is tangent point of the line
|AiAi+1| and the excircle.

EXAMPLE 1. Let R0, d0, r0 be such that (10) holds, that is,

R0 = 2, d0 = 5, r0 = 5.25

and t1 = 4. Then for corresponding triangle A0B0C0 we have

t2 = −3.58041..., t3 = −0.27611..., t4 = t1,
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noting that
∑3

i=1 arctan
(
ti/r0

)
= 0. In the above exposed results negative t’s appear.

To this respect consult [4, p. 98].
For corresponding bicentric hexagon A0B0C0D0E0F0, where

R21 = 5, d21 = 2, r21 = 5.25

and t1 = 4 we have

t2 = 0.27611..., t3 = −3.58041..., t4 = −t1, t5 = −t2,

t6 = −t3, t7 = t1,
6∑

i=1

arctan
(
ti/r21

)
= 0 .

For corresponding bicentric 12-gon where

R211 = 10.07546..., d211 = 0.99251..., r211 = 10.05298...

and t1 = 4 we have

t2 = 2.25780..., t3 = 0.27611..., t4 = −1.70889..., t5 = −3.58041...,

t6 = −4.61236..., t7 = −t1, t8 = −t2, t9 = −t3,

t10 = −t4, t11 = −t5, t12 = −t6, t13 = t1,

12∑

i=1

arctan
(
ti/r211

)
= 0 .

At this moment let us remark that the same t1 can be taken for bicentric n-gon
and corresponding bicentric 2n-gon since there holds the relation

√(
R21 + d21

)2 − r2
21 =

√
(R0 + d0)2 − r2

0 .

In this respect we point out that the largest tangent that can be drawn from circumcircle
to excircle is given by

√
(R0 + d0)2 − r2

0. The least tangent does not exist because the
intersection of circumcircles and excircles is nonempty.

THEOREM 3. Let R0, d0, r0 be such that (12) holds, that is,

R0 = d0, r0 < 2R0.

Then there is bicentric octagon A0B0C0D0E0F0G0H0 such that

R21 = radius of circumcircle of A0B0C0D0E0F0G0H0,

r21 = radius of excircle of A0B0C0D0E0F0G0H0,

d21 = distance between centers of circumcircle and excircle,

where for calculating R21, r21 and d21 we use relations given by (4), (5), (6) and R0 = d0,
r0 < 2R0.
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PROOF. According to (13), we have to prove that

R4
21 − 2d2

21 R2
21 − 4d21 r2

21 R21 + d4
21 = 0 . (22)

It is not difficult to find that

R4
21 + d4

21 = 4R2
0(R0 + r0)2 − 2R2

0d
2
0,

−2d2
21 R2

21 = −2R2
0d

2
0,

−4d21 R21 r2
21 = −4R0d0[(R0 + r0)2 − d2

0];

now, since d0 = R0 we easily deduce (22).

EXAMPLE 2. Let R0, d0, r0 be such that (12) holds, that is,

R0 = 5, d0 = 5, r0 = 6

and t1 = 4. Then for corresponding bicentric quadrilateral A0B0C0D0 we have

t2 = −5.76461..., t3 = −t1, t4 = −t2, t5 = t1,

4∑

i=1

arctan
(
ti/r0

)
= 0.

For corresponding bicentric octagon A0B0C0D0E0F0G0H0 where

R21 = 10.19753..., d21 = 2.45157..., r21 = 9.79795...

and t1 = 4 we have

t2 = −0.87131..., t3 = −5.76461..., t4 = −7.86985..., t5 = −t1,

t6 = −t2, t7 = −t3, t8 = −t4, t9 = t1,

8∑

i=1

arctan
(
ti/r21

)
= 0 .

For the corresponding bicentric 16-gon where

R211 = 20.15617..., d211 = 1.24031..., r211 = 19.84463...

and t1 = 4 we have

t2 = 1.53118..., t3 = −0.87131..., t4 = −3.31870..., t5 = −5.76461...,

t6 = −7.60826..., t7 = −7.86985..., t8 = −6.36971..., t9 = −t1,

t10 = −t2, t11 = −t3, t12 = −t4, t13 = −t5,

t14 = −t6, t15 = −t7, t16 = −t8, t17 = t1,

16∑

i=1

arctan
(
ti/r211

)
= 0 .
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REMARK. Concerning the Conjecture posed previously, we can make the following
remark. Let R0, d0, r0 be any given lengths such that there is a bicentric n-gon
A1 . . .An where

R0 = radius of circumcircle of A1 . . .An,

r0 = radius of excircle of A1 . . .An,

d0 = distance between centers of circumcircle and excircle,

and d0 + r0 > R0 and d0 + R0 < r0. Then there is a bicentric 2n-gon B1 . . .B2n such
that

R21 = radius of circumcircle of B1 . . .B2n,

r21 = radius of excircle of B1 . . .B2n,

d21 = distance between centers of circumcircle and excircle;

to obtain R21, r21 and d21 we apply (4)-(6) respectively.
The Conjecture is proved for n = 3 and n = 4, see Theorems 1, 2 and 3. For

n = 5, 6, 7, 8 we test the Conjecture by many tricky examples; however, the Conjecture
remains valid in all those cases. So, we are asking for the general proof, whether our
Conjecture is true for every given n.
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[3] M. Radić, Connection between Fuss’ relation for bicentric n-gons and Fuss’ relations
for bicentric 2n-gons, Math. Comm. (to appear).
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