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Abstract

In this paper we are concerned with the existence of solutions for nonhomoge-
neous Dirichlet periodic problem associated with the following doubly nonlinear
equation alg(:) — div(|Vu|P~2Vu) = f(z,t,u). The results are obtained by using
pseudomonotonicity arguments and an e-version of Tartar’s inequality.

1 Introduction

This paper is concerned with the existence of solutions of the following doubly nonlinear
periodic elliptic-parabolic type problem
6%(:) —Apu = f(z,t,u) in Qr,
(P) U =@ on ET}
b(u)(0) = b(w)(T) in £,

where Apu = div(|Vu|P~2Vu) is the so-called p-Laplacian operator, 1 < p < +o0, {2 is
a regular and bounded subset of R™, Qr := Q x (0,T), X := 9Q x (0,T), 02 is the
boundary of 2 and T is a positive real number. Besides its mathematical interest, the
p-Laplacian appears in non-Newtonian fluids, in gazes infiltration in porous media, in
glaciology and in some biological phenomena.

When b = idg and p > 2, problem (P) has been studied in [2] by Boldrini and
Crema by using a fixed point argument. While in [§], the authors use subdifferential
methods to deal with the case where Apu is replaced by Ag(u), b = idr and f does
not depend on u. We mention that there are many results concerning the existence of
periodic solutions mainly for semilinear PDEs, by Angenent, Fiedler, Matano, Malett-
Paret and so on. There is a good survey by Polacik [11]. In [8], the authors give
existence and stabilization results in the case of an elliptic operator of Leray-Lions
type with nonlinearities of natural growth in |Vu|. When b # idg, problem (P) with
general quasilinear elliptic operator instead of A, has been treated by various authors
(for example by linear methods as in [9]). A dynamical system approach has also been
used in [5], [4] and [6], to deal with the asymptotic behavior of the problem (P) with
periodic condition replaced by initial data.
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2 Hypotheses and Definitions

We suppose the following hypotheses:
(H1) b:R — R is a nondecreasing locally Lipschitzian function such that b(0) = 0.

(H2) f: @ x RT x R — R is a Caratheodory function, i.e. f(z,.,.) is continuous
function for almost every z € Q on R x R, and f(.,t,£) is measurable on
for all (t,€) € RT x R, and satisfies |f(z,t,s)| < a(]s]), for all s € R, and a.e.
(x,t) € Q@ x RT, where a : R — R is an increasing function.

(H3) f is a T-time periodic function i.e. for any s € R, and a.e. (z,t) € Q x RT we
have f(z,t +T,s) = f(x,t,s).

(H4) ¢ € LP(0,T; WHP()) is such that: %—f € LY (Q7) and ¢(0) = o(T) in LY(9),
where p’ is the conjugate of p i.e. % + i =1

(H5) There exist positive constants « and § such that o < ¢(x,t) < § and f(x,t,3) <
0< f(z,t, ) a.e. in Q.

Recall that a function w is called a weak solution of problem (P) if w is such that
u € Vo + ¢, where Vy := LP(0,T; Wol’p(ﬂ)), ue L*®(Q7), 6%(:) € LP (0, T; W= (Q)),
and for all v € V),

T
/ <8b(u) : v> + / |VulP~2Vu. Vo = flz, t,u)v
0 ot Qr Qr

[ (G =, o

for any v € WH1(0, T; L' (Q)) N Vo with v(0) = v(T) in L' ().
Let k£ be a nonnegative constant satisfying —k +1 < a < 8 < k—1. We shall
denote by IC the set

and

K:={ue€Vy+ psuch that —k <u<kae. in Qr}

3 Main Result

The main result is the following.

THEOREM 3.1. Let us suppose that the conditions (H1)-(H5) are satisfied. Then
there exists a solution u of (P) such that: b(a) < b(u) < b(3) a.e. in Q.

Before proving our main result, we have several remarks. First, as announced above,
the method used here, which is based on pseudomonotonicity arguments combined
with an e-version of Tartar’s inequality, will also work for similar hypothesis on the
data in both parabolic and elliptic cases if the singular p-Laplacian is replaced by the
regularized one

Aju = div(|Vu|* + e)%Vu. (1)
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This last operator can be viewed as the subdifferential of a fixed function [3].

Second, to our knowledge, the regularized p-Laplacian operator (1) has never been
treated by pseudomonotonicity arguments.

Third, the informationu € L*(Qr) can be viewed as a consequence of a localization
property of the approximate solutions. For this aim a comparison principle is needed.
Note that in [4], a comparison principle is obtained with the regularity supplementary
hypothesis:

Ob(u)
ot
This hypothesis can be recuperated with additional hypothesis on b and on the ini-
tial data, in the case of initial value problems. For periodic problems, it becomes a
regularity property on the whole solution.

€ L' (Qr) (2)

We have opted here for the introduction of regular class of lower and upper solutions
(constants upper and lower solutions).

Finally let us mention that the results of [2] obtained in the case of p > 2 can be
extended to 1 < p < 2 by replacing the singular p-Laplacian by A5 in (1) and using
the same fixed point argument and the e-version of Tartar’s inequality claimed here.

4 Proof of the Main Result

We shall use a regularization method: In the degenerate case p > 2, we study the
sequence of problems

abggu) —Apu = f(z,t,u) in Qr,
(Pn) u = pon X,
by, (1w)(0) = by (uw)(T) in Q,

where b,, is sufficiently regular. (P,) is equivalent to

92 — div( 5 ks F(V(u + 9)) = ke £t )

(Pn) TVt ol =57 in Qr,
u =0 on Xr,

u(0) = w(T) in Q,

where F(¢) = |¢|P72¢(, V¢ € R™.

Note that in this case, existence is an immediate consequence of [7]. Hence, we
shall focus our attention on the case 1 < p < 2, which is more complicated than the
degenerate one.

(Py,) is approximated by

6b5—1(5u) _A;Enu: f(x,t,u) in QT}

(Pn,e) U = @ on X,
by, (1w)(0) = by (uw)(T) in Q,
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where A7 is defined by (1). (Pp) is equivalent to
% - div(mFEVU) = mf(x, t,u)
1 u p—2 .
Pry ] SRV + 0 Vult i G,
u = @ on X,
w(0) = u(T) in Q.

LEMMA 4.1. Let b € C(R) be such that, 0 < m < b(s) < M on R with positive
real constants: m and M are nonnegative real constants. If f: Qr x R xR" — Ris a

Caratheodory function with |f(z,t,s,¢)| < M a.e. (x,t) € Qr and V(s,() € R**! and
¢ satisfies (H1)-(H5). Then there exists u € K such that

<%, v = u> + fQT B(U)FE(V’UJ)V(’U —u)

(Prr)4 > Jo, f(x:t,u, Vu)(v—u) for all v € K,
w(0) = u(T) in Q.

PROOF. We consider the following sequence of problems:

Gu — div(b(u)F(Vu)) + 24 = f(2,t,u, Vu) in Qr,
(Pn7T> U = @ on X,
u(0) = w(T) in Q,

where
(s— k)Pt ifs>k,
B(s) = 0 if |s| <k,
—(=s— k)Pt if s < —F,

and F.(¢) = (|C]2 + )" (, V¢ € R™. Let us seek a solution of

_ % +Av = %—f in Qr,
(Py,r) v =0 on X,
v(0) =v(T) inQ,

where

A(w) = —div(B(o + Q) Fu(Vo + ) + 20+

— flz, t,v+ ¢, V(v +¢))
is defined on V. B

A solution v, of (P, r) will yield a solution u, of (P, r) by taking u, = v, +¢. An
existence result for (73777T) holds if,for example, the hypothesis of pseudomonotonicity,
boundedness and coerciveness [10, p. 319] are satisfied for A. The two last hypothesis
are easily verified while the first one needs the following lemma.

LEMMA 4.2. (e-Tartar Inequality) For all p in (1,2) there exist ¢ > 0 such that for
all ¢ and ¢ in R™ we have:

clé = (P < {(Fu(e) = FolQ) € — OVl + [ClP + 2%,
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PROOF. By using Taylor’s expansion of f(t) := ¢c(§ + (¢ —&)), on [0, 1] where:

pe :R" — R
a — (la]>+e)%,

we obtain the desired result.

Note that ¢, is a convex function because of its continuity and mid-convexity. Ap-
plying Lemma 4.2 with £ = Vv, and {( = Vv where (v,), is a sequence such that
v, — v in Vy and %L; - % and v, (0) = v, (T'), we have v, — v. Then pseudomono-
tonicity for A is established and existence of solution to (P, r) is guaranteed. Let us
now pass to the limit in n — 0T. First we collect some a priori estimates.

LEMMA 4.3. We have

(%> is bounded in L¥' (Qr). (3)
/o
(), is bounded in LP(0, T; WP(Q)). (4)
(%) is bounded in L¥ (0, T; W17 (Q)). (5)
n

PROOF. Taking (u, — k)™ as a test function in the equation of (P, 1), we have

is bounded in L” (Qy). In a similar way, (M) is bounded
n

Then (7““*“*1“1 )
n n n

in LP' (Qp). Then (3) is obtained. Moreover,

(uy)n is bounded in LP(Qr). (6)

By using v, = u, — ¢ as a test function in the equation of (P, ), we obtain

p

[ (a0 Wl < cre( [ wur)”. )
Qr Qr

p(2—p)

/ V[P = / ([Vugl? + )™ [V [P(| Vg |* + €)™
or or

Hence, by using Young’s inequality we get

/ Yy l? < c(6) / (Vg2 + )T [Ty +6 [ ([Vuyf? + )%,
or or or

For § sufficiently small, we obtain

/ IV |? < c/ (V|2 + &) 52|Vl + c. (8)
Qr Qr
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Now, as can easily be deduced, (6), (7) and (8) lead to (4) and (5). Thanks to relations
(4) and (5), there exist u € LP(0,T; WP(Q)) such that for a subsequence denoted
again by (u,), we have u, — w in LP(0,T; W'P(Q)) and u, — u in LP(Q7) and a.e.
in Q7 when  — 07. By (3), it follows that —k < u < k a.e. in Qr and since f3 is
monotone, then u is a solution of (P1,r) (convergence u,, — u in LP(0,T; WP(1)),
can be obtained in similar way as in the proof of pseudomonotonicity of A).

Let us now prove Theorem 3.1. Let(b, ), be a sequence of C*(R) such that 1 <
b,,(s) < Cn, 0<b"(s) < Cp, by(0) =0 and b, — b in Cjee(R). We have the following.

LEMMA 4.4. For each € > 0 and n € N*, there exists a solution u € K of (Pp,c).

PROOF. For § > 0, we define:

~

~ . flx, t,u, Vu)
ol b V) = S Rty V)
where
vt 0,V = g ss (0 8000) + et s (98(0) + 0[S (w)P,
with

8 ifulz,t) > B,
S(u)(z,t) =< u(z,t) if a<wu(z,t)<p,
a ifu(z,t) <a.

By using Lemma 4.1, there exists a solution us of

(G0 =)+ fo, mEmn (VW) V(v —u)
(Ps.1) > fQT fs(x, t,u, Vu)(v—u) for all v € K,
w(0) = u(T) in Q.

By choosing v = u — t(¢a(u) — ¥a(p)) for t > 0 sufficiently small and ¥y(s) =
sers’ , for A > 0 to be fixed later, we obtain

1

| [&ow-enw] var <
Qr n

with \ sufficiently large, u is bounded in L? (0, T, W1?(Q)), and by choosing separately

v=u—t0% and v = u+ 0~ with 6 € L>(Q7) NV, we obtain that (%), is bounded

in V) + L*(Qr). Let us now consider the following problem

B — div(grdmyy Fe(Vu) + 28 = fi(a, t,u, Vu) in Qr,
(Ps.n,1) U = @ on X,

w(0) = u(T) in Q,

with indices § and ¢’ . By using ¥x(us — us/) as a test function and applying Aubin’s
compactness theorem, the monotonicity of 4 and Lemma 4.2, we obtain for A chosen
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sufficiently large that us — w in LP(0, T, WP(£2)). The existence of a solution to

(tv—u) + Jo, mEanF(Vu)V (v - u)

(Pen,T) > [o, f(@,t,u, Vu)(v—wu), forallv e K,
w(0) = u(T) in Q,

is now proved. The localization a < u < § can easily be shown and our result is
proved.

Passing to the limit in € — 0 and n — +o00 is almost the same as in [1] or [6].
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