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Abstract

In this paper we are concerned with the existence of solutions for nonhomoge-
neous Dirichlet periodic problem associated with the following doubly nonlinear
equation ∂b(u)

∂t − div(|∇u|p−2∇u) = f(x, t, u). The results are obtained by using
pseudomonotonicity arguments and an ε-version of Tartar’s inequality.

1 Introduction

This paper is concerned with the existence of solutions of the following doubly nonlinear
periodic elliptic-parabolic type problem

(P)





∂b(u)
∂t −4pu = f(x, t, u) in QT ,

u = ϕ on ΣT ,
b(u)(0) = b(u)(T ) in Ω,

where 4pu = div(|∇u|p−2∇u) is the so-called p-Laplacian operator, 1 < p < +∞, Ω is
a regular and bounded subset of Rn, QT := Ω × (0, T ), ΣT := ∂Ω × (0, T ), ∂Ω is the
boundary of Ω and T is a positive real number. Besides its mathematical interest, the
p-Laplacian appears in non-Newtonian fluids, in gazes infiltration in porous media, in
glaciology and in some biological phenomena.

When b = idR and p ≥ 2, problem (P) has been studied in [2] by Boldrini and
Crema by using a fixed point argument. While in [8], the authors use subdifferential
methods to deal with the case where 4pu is replaced by 4g(u), b = idR and f does
not depend on u. We mention that there are many results concerning the existence of
periodic solutions mainly for semilinear PDEs, by Angenent, Fiedler, Matano, Malett-
Paret and so on. There is a good survey by Polacik [11]. In [8], the authors give
existence and stabilization results in the case of an elliptic operator of Leray-Lions
type with nonlinearities of natural growth in |∇u|. When b 6= idR, problem (P) with
general quasilinear elliptic operator instead of 4p has been treated by various authors
(for example by linear methods as in [9]). A dynamical system approach has also been
used in [5], [4] and [6], to deal with the asymptotic behavior of the problem (P) with
periodic condition replaced by initial data.
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2 Nonhomogeneous Dirichlet Periodic Problem

2 Hypotheses and Definitions

We suppose the following hypotheses:

(H1) b : R → R is a nondecreasing locally Lipschitzian function such that b(0) = 0.

(H2) f : Ω × R+ × R → R is a Caratheodory function, i.e. f(x, ., .) is continuous
function for almost every x ∈ Ω on R+ × R, and f(., t, ξ) is measurable on Ω
for all (t, ξ) ∈ R+ × R, and satisfies |f(x, t, s)| ≤ a(|s|), for all s ∈ R, and a.e.
(x, t) ∈ Ω × R+, where a : R+ → R+ is an increasing function.

(H3) f is a T -time periodic function i.e. for any s ∈ R, and a.e. (x, t) ∈ Ω × R+ we
have f(x, t + T, s) = f(x, t, s).

(H4) ϕ ∈ Lp(0, T ;W 1,p(Ω)) is such that: ∂ϕ
∂t

∈ Lp′
(QT ) and ϕ(0) = ϕ(T ) in L1(Ω),

where p′ is the conjugate of p i.e. 1
p

+ 1
p′ = 1.

(H5) There exist positive constants α and β such that α ≤ ϕ(x, t) ≤ β and f(x, t, β) ≤
0 ≤ f(x, t, α) a.e. in QT .

Recall that a function u is called a weak solution of problem (P) if u is such that
u ∈ V0 +ϕ, where V0 := Lp(0, T ;W 1,p

0 (Ω)), u ∈ L∞(QT ), ∂b(u)
∂t ∈ Lp′

(0, T ;W−1,p′
(Ω)),

and for all v ∈ V0,

∫ T

0

〈
∂b(u)
∂t

, v

〉
+

∫

QT

|∇u|p−2∇u.∇v =
∫

QT

f(x, t, u)v

and ∫ T

0

〈
∂b(u)
∂t

, v

〉
= −

∫

QT

b(u)
∂v

∂t

for any v ∈W 1,1(0, T ;L1(Ω)) ∩ V0 with v(0) = v(T ) in L1(Ω).
Let k be a nonnegative constant satisfying −k + 1 ≤ α ≤ β ≤ k − 1. We shall

denote by K the set

K := {u ∈ V0 + ϕ such that − k ≤ u ≤ k a.e. in QT }

3 Main Result

The main result is the following.
THEOREM 3.1. Let us suppose that the conditions (H1)-(H5) are satisfied. Then

there exists a solution u of (P) such that: b(α) ≤ b(u) ≤ b(β) a.e. in QT .

Before proving our main result, we have several remarks. First, as announced above,
the method used here, which is based on pseudomonotonicity arguments combined
with an ε-version of Tartar’s inequality, will also work for similar hypothesis on the
data in both parabolic and elliptic cases if the singular p-Laplacian is replaced by the
regularized one

∆ε
pu := div(|∇u|2 + ε)

p−2
2 ∇u. (1)
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This last operator can be viewed as the subdifferential of a fixed function [3].
Second, to our knowledge, the regularized p-Laplacian operator (1) has never been

treated by pseudomonotonicity arguments.
Third, the informationu ∈ L∞(QT ) can be viewed as a consequence of a localization

property of the approximate solutions. For this aim a comparison principle is needed.
Note that in [4], a comparison principle is obtained with the regularity supplementary
hypothesis:

∂b(u)
∂t

∈ L1(QT ) (2)

This hypothesis can be recuperated with additional hypothesis on b and on the ini-
tial data, in the case of initial value problems. For periodic problems, it becomes a
regularity property on the whole solution.

We have opted here for the introduction of regular class of lower and upper solutions
(constants upper and lower solutions).

Finally let us mention that the results of [2] obtained in the case of p ≥ 2 can be
extended to 1 < p < 2 by replacing the singular p-Laplacian by ∆ε

p in (1) and using
the same fixed point argument and the ε-version of Tartar’s inequality claimed here.

4 Proof of the Main Result

We shall use a regularization method: In the degenerate case p ≥ 2, we study the
sequence of problems

(Pn)





∂bn(u)
∂t −4pu = f(x, t, u) in QT ,

u = ϕ on ΣT ,
bn(u)(0) = bn(u)(T ) in Ω,

where bn is sufficiently regular. (Pn) is equivalent to

(P̃n)





∂u
∂t − div( 1

b′n(u+ϕ)F (∇(u+ ϕ))) = 1
b′n(u+ϕ)f(x, t, u)

+ b′′(u+ϕ)
(b′n(u+ϕ))2 |∇(u+ ϕ)|p − ∂ϕ

∂t in QT ,

u = 0 on ΣT ,
u(0) = u(T ) in Ω,

where F (ζ) = |ζ|p−2ζ, ∀ζ ∈ Rn.

Note that in this case, existence is an immediate consequence of [7]. Hence, we
shall focus our attention on the case 1 < p < 2, which is more complicated than the
degenerate one.

(Pn) is approximated by

(Pn,ε)





∂bn(u)
∂t −4ε

pu = f(x, t, u) in QT ,
u = ϕ on ΣT ,

bn(u)(0) = bn(u)(T ) in Ω,
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where 4ε
p is defined by (1). (Pn,ε) is equivalent to

(P̃n,ε)





∂u
∂t − div( 1

b′n(u)Fε∇u) = 1
b′n(u)f(x, t, u)

+ b′′(u)
(b′(u))2 (|∇u|2 + ε)

p−2
2 |∇u|2 in QT ,

u = ϕ on ΣT ,
u(0) = u(T ) in Ω.

LEMMA 4.1. Let b̃ ∈ C(R) be such that, 0 < m ≤ b̃(s) ≤ M on R with positive
real constants: m and M are nonnegative real constants. If f̃ : QT × R ×Rn → R is a
Caratheodory function with |f̃ (x, t, s, ζ)| ≤ M a.e. (x, t) ∈ QT and ∀(s, ζ) ∈ Rn+1 and
ϕ satisfies (H1)-(H5). Then there exists u ∈ K such that

(P1,T )





〈
∂u
∂t
, v − u

〉
+

∫
QT

b̃(u)Fε(∇u)∇(v − u)
≥

∫
QT

f̃ (x, t, u,∇u)(v− u) for all v ∈ K,
u(0) = u(T ) in Ω.

PROOF. We consider the following sequence of problems:

(Pη,T )





∂u
∂t − div(̃b(u)Fε(∇u)) + β(u)

η = f̃ (x, t, u,∇u) in QT ,

u = ϕ on ΣT ,
u(0) = u(T ) in Ω,

where

β(s) =





(s− k)p−1 if s > k,
0 if |s| ≤ k,

−(−s − k)p−1 if s < −k,

and Fε(ζ) = (|ζ|2 + ε)
p−2
2 ζ, ∀ζ ∈ Rn. Let us seek a solution of

(P̃η,T )





∂v
∂t + Av = ∂ϕ

∂t in QT ,
v = 0 on ΣT ,

v(0) = v(T ) in Ω,

where

A(v) := −div(̃b(v + ϕ)Fε(∇v + ϕ)) +
β(v + ϕ)

η
− f̃ (x, t, v + ϕ,∇(v + ϕ))

is defined on V0.
A solution vη of (P̃η,T ) will yield a solution uη of (Pη,T ) by taking uη = vη +ϕ. An

existence result for (P̃η,T ) holds if,for example, the hypothesis of pseudomonotonicity,
boundedness and coerciveness [10, p. 319] are satisfied for A. The two last hypothesis
are easily verified while the first one needs the following lemma.

LEMMA 4.2. (ε-Tartar Inequality) For all p in (1,2) there exist c > 0 such that for
all ζ and ξ in Rn we have:

c|ξ − ζ|p ≤ {(Fε(ξ) − Fε(ζ), ξ − ζ)}
p
2 {|ξ|p + |ζ|p + ε

p
2 }1−p

2 .
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PROOF. By using Taylor’s expansion of f(t) := ϕε(ξ + t(ζ − ξ)), on [0, 1] where:

ϕε : Rn → R
a → (|a|2 + ε)

p
2 ,

we obtain the desired result.
Note that ϕε is a convex function because of its continuity and mid-convexity. Ap-

plying Lemma 4.2 with ξ = ∇vn and ζ = ∇v where (vn)n is a sequence such that
vn ⇀ v in V0 and ∂vn

∂t
⇀ ∂v

∂t
and vn(0) = vn(T ), we have vn → v. Then pseudomono-

tonicity for A is established and existence of solution to (Pη,T ) is guaranteed. Let us
now pass to the limit in η → 0+. First we collect some a priori estimates.

LEMMA 4.3. We have
(
βuη

η

)

η

is bounded in Lp′
(QT ). (3)

(uη)η is bounded in Lp(0, T ;W 1,p(Ω)). (4)
(uη

∂t

)
η

is bounded in Lp′
(0, T ;W−1,p′

(Ω)). (5)

PROOF. Taking (uη − k)+ as a test function in the equation of (Pη,T ), we have
∫

QT

[(u− k)+]p

η
≤ c

∫

QT

(u− k)+.

Then
(

[(u−k)+]p−1

η

)
η

is bounded in Lp′
(QT ). In a similar way,

(
[(u+k)−]p−1

η

)
η

is bounded

in Lp′
(QT ). Then (3) is obtained. Moreover,

(uη)η is bounded in Lp(QT ). (6)

By using vη = uη − ϕ as a test function in the equation of (P̃η,T ), we obtain

∫

QT

(|∇uη|2 + ε)
p−2
2 |∇uη|2 ≤ c+ c

(∫

QT

|∇uη|p
) 1

p

. (7)

but ∫

QT

|∇uη|p =
∫

QT

(|∇uη|2 + ε)
p(p−2)

4 |∇uη|p(|∇uη|2 + ε)
p(2−p)

4 .

Hence, by using Young’s inequality we get
∫

QT

|∇uη|p ≤ c(δ)
∫

QT

(|∇uη|2 + ε)
p−2
2 |∇uη|2 + δ

∫

QT

(|∇uη|2 + ε)
p
2 .

For δ sufficiently small, we obtain
∫

QT

|∇uη|p ≤ c

∫

QT

(|∇uη|2 + ε)
p−2
2 |∇u|2 + c. (8)
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Now, as can easily be deduced, (6), (7) and (8) lead to (4) and (5). Thanks to relations
(4) and (5), there exist u ∈ Lp(0, T ;W 1,p(Ω)) such that for a subsequence denoted
again by (uη)η we have uη ⇀ u in Lp(0, T ;W 1,p(Ω)) and uη → u in Lp(QT ) and a.e.
in QT when η → 0+. By (3), it follows that −k ≤ u ≤ k a.e. in QT and since β is
monotone, then u is a solution of (P1,T ) (convergence uη → u in Lp(0, T ;W 1,p(Ω)),
can be obtained in similar way as in the proof of pseudomonotonicity of A).

Let us now prove Theorem 3.1. Let(bn)n be a sequence of C∞(R) such that 1
n
≤

b
′

n(s) ≤ Cn, 0 ≤ b
′′
(s) ≤ Cn, bn(0) = 0 and bn → b in Cloc(R). We have the following.

LEMMA 4.4. For each ε > 0 and n ∈ N∗, there exists a solution u ∈ K of (Pn,ε).

PROOF. For δ > 0, we define:

f̃δ(x, t, u,∇u) :=
f̂ (x, t, u,∇u)

1 + δ|f̂(x, t, u,∇u)|

where

f̂(x, t, u,∇u) =
1

b′n(S(u))
f(x, t, S(u)) +

b′′S(u)
(b′(S(u)))2

(|∇S(u)|2 + ε)
p−2
2 |∇S(u)|2,

with

S(u)(x, t) =





β if u(x, t) > β,
u(x, t) if α ≤ u(x, t) ≤ β,

α if u(x, t) < α.

By using Lemma 4.1, there exists a solution uδ of

(Pδ,T )





〈
∂u
∂t
, v − u

〉
+

∫
QT

1
b′n(S(u))

Fε(∇u)∇(v − u)

≥
∫
QT

f̃δ(x, t, u,∇u)(v− u) for all v ∈ K,
u(0) = u(T ) in Ω.

By choosing v = u − t(ψλ(u) − ψλ(ϕ)) for t > 0 sufficiently small and ψλ(s) =
seλs2

, for λ > 0 to be fixed later, we obtain
∫

QT

[
1
Cn

ψ
′

λ(u) − cψλ(u)
]
|∇u|p ≤ c,

with λ sufficiently large, u is bounded in Lp(0, T,W 1,p(Ω)), and by choosing separately
v = u− tθ+ and v = u+ tθ− with θ ∈ L∞(QT )∩V0 we obtain that (∂un

∂t )n is bounded
in V ′

0 + L1(QT ). Let us now consider the following problem

(Pδ,η,T )





∂u
∂t − div( 1

b′n(S(u))Fε(∇u) + β(u)
η = f̃δ(x, t, u,∇u) in QT ,

u = ϕ on ΣT ,
u(0) = u(T ) in Ω,

with indices δ and δ′ . By using ψλ(uδ − uδ′) as a test function and applying Aubin’s
compactness theorem, the monotonicity of β and Lemma 4.2, we obtain for λ chosen
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sufficiently large that uδ → u in Lp(0, T,W 1,p(Ω)). The existence of a solution to

(Pε,n,T )





〈
∂u
∂t , v − u

〉
+

∫
QT

1
b′n(S(u))Fε(∇u)∇(v − u)

≥
∫
QT

f̂ (x, t, u,∇u)(v− u), for all v ∈ K,
u(0) = u(T ) in Ω,

is now proved. The localization α ≤ u ≤ β can easily be shown and our result is
proved.

Passing to the limit in ε→ 0 and n→ +∞ is almost the same as in [1] or [6].
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