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Abstract

In this paper, we present a survey of recent results on the existence and mul-
tiplicity of solutions of nonlocal boundary value problem involving second order
ordinary differential equations.

1 Introduction

Boundary value problems involving ordinary differential equations arise in physical
sciences and applied mathematics. In some of these problems, subsidiary conditions are
imposed locally. In some other cases, nonlocal conditions are imposed. It is sometimes
better to impose nonlocal conditions since the measurements needed by a nonlocal
condition may be more precise than the measurement given by a local condition. For
example, the classical Robin problem is given by

u′′(t) + f(t, u(t), u′(t)) = 0, (1)

with local conditions
u(0) = 0 and u′(1) = 0. (2)

If the local condition u′(1) = 0 in (2) is replaced by the nonlocal condition u(1) = u(η)
in

u(0) = 0 and u(1) = u(η), (3)

(where η ∈ (0, 1)), then (1),(3) is a nonlocal problem. By the Rolle theorem, (1),(2) can
be thought as the limiting case of (1),(3) as η → 1−. Obviously, the nonlocal problem
(1),(3) gives better effect than the local problem (1),(2). In the process of scientific
experiment and numerical computation, it is more difficult to determine the value of
u′(1) than that of u(η)−u(1)

η−1
.

The nonlocal condition u(1) = u(η) can be written as a ‘difference’ u(1) − u(η).
Therefore, nonlocal problem may be regarded as boundary value problem involving
‘continuous equations’ and one or more ‘discrete multi-point boundary conditions’.

In this paper, we present a survey of recent results on the existence and multiplicity
of solutions of nonlocal boundary value problems of second order ordinary differential
equations.

More precisely, we will summarize basic results in the literature related to the
following four directions:
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258 Nonlocal Boundary Value Problems

• Results at nonresonance.

• Results at resonance.

• Positive solutions of multi-point boundary value problems.

• Global continua of positive and nodal solutions of multi-point BVPs .

2 Results at Nonresonance

In this paper, if a linear differential operator L with certain boundary conditions
is invertible, that is, the kernel space Ker(L) = {0}, then we say that the corre-
sponding BVPs is at nonresonance. On the other hand, if L is noninvertible, namely,
dimKer(L) ≥ 1, then we say that the corresponding BVPs is at resonance.

2.1 The Lower Order Singularity Case

The study of multi-point boundary value problems for linear second order ordinary
differential equations was initialed by Il’in abd Moiseev in [57, 58]. In 1992, Gupta
[36] firstly studied existence of solutions to the nonlinear three-point boundary value
problems

u′′(t) = f(t, u(t), u′(t)) + e(t), 0 < t < 1,
u(0) = 0, u(1) = u(η), (4)

where η ∈ (0, 1) is a constant, f : [0, 1]×R2 → R satisfies the Carathéodory conditions
and some at most linear growth conditions.

Define Lu = −u′′, u ∈ D(L) = {u ∈ W 2,1(0, 1), u(0) = 0, u(1) = u(η)}, then
Ker(L) = {0}. Hence, (4) is a nonresonance problem. In this section, all problems are
at nonresonance, we omit corresponding proofs.

Since then, the existence of solutions of the more general nonlinear multi-point
boundary value problems have been investigated by many authors, see [37], [38], [39],
[40], [44], [45], [46], [47], [48], [49], [34], [35], [75], [76], [104] for some references along
this line.

In this section, we assume that α ∈ (0,∞) and η ∈ (0, 1) are given positive constants
with

αη 6= 1. (5)

Then (5) implies that the linear three-point boundary value problem

x′′(t) = y(t), 0 < t < 1, (6)

x(0) = 0, x(1) = αx(η) (7)

has a unique solution for each y ∈ L1(0, 1). So (5) is a nonresonance condition. It is
easy to check that (6),(7) is equivalent to the fixed point problem

x(t) =
∫ t

0

(t − s)y(s)ds +
αt

1 − αη

∫ η

0

(η − s)y(s)ds − 1
1 − αη

∫ 1

0

(1 − s)y(s)ds. (8)
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In [44], Gupta, Ntouyas and Tsamatos used the Leray-Schauder continuation theorem
[105] to prove an existence result for the three-point boundary value problem

x′′(t) = f(t, x(t), x′(t)) + e(t), 0 < t < 1, (9)

x(0) = 0, x(1) = αx(η). (10)

THEOREM 2.1 [44]. Let f : [0, 1]× R2 → R satisfy the Carathéodory conditions.
Assume

|f(t, u, v)| ≤ p(t)|u|+ q(t)|v| + r(t), (11)

for a.e. t ∈ [0, 1] and (u, v) ∈ R2. Also let α ∈ R and η ∈ (0, 1) be given. Then the
boundary value problem (9),(10) has at least one solution in C1[0, 1] provided

{ ||p||1 + ||q||1 < 1, if α ≤ 1,
||p||1 + ||q||1 < 1−αη

α(1−η)
, if 1 < α < 1

η
.

Now let ξi ∈ (0, 1) for i = 1, 2, ...,m− 2 satisfy 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, and
ai ∈ R, i = 1, 2, ...,m− 2, have the same sign and α =

∑m−2
i=1 ai 6= 0, e ∈ L1[0, 1].

Gupta, Ntouyas and Tsamatos studied the nonlinear m-point boundary value problem

x′′(t) = f(t, x(t), x′(t)) + e(t), 0 < t < 1, (12)

x(0) = 0, x(1) =
m−2∑

i=1

aix(ξi), (13)

using the priori estimates that they obtained for the three-point BVP (12),(10). In
fact, for every solution x(t) of the BVP (12),(13), let us denote

m = min
x∈[ξ1, ξm−2 ]

x(t), M = max
x∈[ξ1, ξm−2 ]

x(t).

If ai ∈ [0,∞), then

aim ≤ aix(ξi) ≤ aiM, i ∈ {1, · · · ,m− 2}.

If ai ∈ (−∞, 0], then

aim ≥ aix(ξi) ≥ aiM, i ∈ {1, · · · ,m− 2}.

In either case, we have that

m ≤
∑m−2

i=1 aix(ξi)∑m−2
i=1 ai

≤ M.

It follows that there exists η ∈ [ξ1, ξm−2], such that x(η) = x(1)
α , which implies that

x(t) is also a solution of the BVP (12),(10).
THEOREM 2.2 [44]. Let f : [0, 1]× R2 → R satisfy the Carathéodory conditions.

Assume
|f(t, u, v)| ≤ p(t)|u|+ q(t)|v| + r(t), (14)
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for a.e. t ∈ [0, 1] and (u, v) ∈ R2. Also let α =
∑m−2

i=1 ai and η ∈ (0, 1) be given. Then
the boundary value problem (12),(13) has at least one solution in C1[0, 1] provided

{
||p||1 + ||q||1 < 1, if α ≤ 1,
||p||1 + ||q||1 < 1−αξm−2

α(1−ξ1)
, if 1 < α < 1

ξm−2
.

Feng and Webb established a result in which f is allowed to have nonlinear growth.
THEOREM 2.3 [34]. Assume that f : [0, 1] × R2 → R is continuous and has the

decomposition
f(t, x, p) = g(t, x, p) + h(t, x, p)

such that
(1) pg(t, x, p) ≤ 0 for all (t, x, p) ∈ [0, 1]×R2;
(2) |h(t, x, p)| ≤ a(t)|x|+b(t)|p|+u(t)|x|r+v(t)|p|k+c(t) for all (t, x, p) ∈ [0, 1]×R2,

where a, b, u, v, c are in L1(0, 1) and 0 ≤ r, k < 1.
Then, for α 6= 1

η
, there exits a solution x ∈ C1[0, 1] to (9),(10) provided that





||a||1 + ||b||1 < 1
2 , if α ≤ 1,

||a||1 + ||b||1 < 1
2

(
1 − (α−1)2

α2(1−η)2

)
, if 1 < α < 1

η
,

||a||1 + ||b||1 < 1
2

(
1 − 1

α2η2

)
, if 1

η < α.

In [75], Ma used the nonlinear alternative to establish a result on the existence of
solutions for the inhomogeneous three-point boundary value problem

x′′(t) = f(t, x(t), x′(t)) + e(t), 0 < t < 1, (15)

x(0) = A, x(1) − x(η) = B(1 − η), (16)

where f : [0, 1] × R2 → R satisfies some sign condition near the constant ‘A’, but
without any growth restriction at ∞.

THEOREM 2.4 [75]. Let f : [0, 1] × R2 → R be continuous. Suppose there are
constants L1, L2 : L2 < B < L1 such that

(1) f(t, x, L1) ≥ 0 for (t, x) ∈ [0, 1]× [A− |L2|, A− |L1|];
(2) f(t, x, L2) ≤ 0 for (t, x) ∈ [0, 1]× [A− |L2|, A− |L1|];
(3) L2−B

1−η ≤ f(t, x, p) ≤ L1−B
1−η for (t, x, p) ∈ [0, 1]× [A− |L2|, A− |L1|]× [L2, L1].

Then the problem (15),(16) has at least one solution x such that L2 ≤ x′ ≤ L1.
In [76], Ma obtained two results on the existence of the Robin type m-point bound-

ary value problem

x′′(t) = f1(t, x(t), x′(t)) + e1(t), 0 < t < 1, (17)

x′(0) = 0, x(1) =
m−2∑

i=1

aix(ξi), (18)

with the nonresonance condition α =
∑m−2

i=1 ai 6= 1.
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THEOREM 2.5 [76]. Let α ≤ 0 and f : [0, 1]× R2 → R be continuous. Suppose
there are constants L1, L2 : L2 < 0 < L1 such that

(1) f(t, x, L1) + e(t) ≤ 0 for (t, x) ∈ [0, 1]× [−L,L];
(2) f(t, x, L2) + e(t) ≥ 0 for (t, x) ∈ [0, 1]× [−L,L] where L := max{L1,−L2}.

Then the problem (17),(18) has at least one solution satisfying L2 ≤ x′ ≤ L1.
THEOREM 2.6 [76] let 0 < α 6= 1 and f : [0, 1]×R2 → R be continuous. Suppose

there are constants L1, L2 : L2 < 0 < L1 such that
(1) f(t, x, L1) + e(t) ≤ 0 for (t, x) ∈ [0, 1]× [−L̄, L̄];
(2) f(t, x, L2) + e(t) ≥ 0 for (t, x) ∈ [0, 1]× [−L̄, L̄] where

L̄ >
( 1 − ξ1
|α− 1| + 1

)
max{−L2, L1}.

Then the problem (17),(18) has at least one solution satisfying L2 ≤ x′ ≤ L1.

2.2 The Higher Order Singularity Case

In 2005, Ma and Thompson [101] obtained an existence result for the second order m-
point boundary value problem (12),(13) in which f and e have a higher order singularity
at t = 0 and t = 1. They made the following assumptions:

(H0) ai ∈ R and ξi ∈ (0, 1) for i = 1, 2, ...,m−2 where 0 < ξ1 < ξ2 < · · · < ξm−2 < 1
and

m−2∑

i=1

aiξi 6= 1.

(H1) There exist q(t) ∈ L1[0, 1] and p(t), r(t) ∈ L1
loc(0, 1) so that t(1− t)p(t), t(1−

t)r(t) ∈ L1[0, 1], and

|f(t, u, v)| ≤ p(t)|u|+ q(t)|v| + r(t), a.e. t ∈ [0, 1], (u, v) ∈ R2,

where

L1
loc(0, 1) =

{
u | u|[c,d] ∈ L1[c, d] for every compact interval [c, d] ⊂ (0, 1)

}
.

(H2) The function e : [0, 1] → R satisfies
∫ 1

0
t(1 − t)|e(t)|dt < ∞.

THEOREM 2.7 [101]. Let f : [0, 1]×R2 → R satisfy the Carathéodory conditions.
Assume that (H0), (H1) and (H2) hold. Then problem (12),(13) has at least one
solution in

X := {u ∈ C1(0, 1) | u ∈ C[0, 1], lim
t→1

(1 − t)u′(t) and lim
t→0

tu′(t) exist}

provided

||p||E
(
1 +

∑m−2
i=1 |ai|

|1−
∑m−2

i=1 aiξi|
)

+ ||q||L1 < 1,

where E is the Banach space

E = {y ∈ L1
loc(0, 1) | t(1 − t)y(t) ∈ L1[0, 1]}
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equipped with the norm

||y||E =
∫ 1

0

t(1 − t)|y(t)|dt.

REMARK 2.1. Let us consider the three-point boundary value problem

x′′ = g(t, x, x′),
x(0) = 0, x(1) = x

(
1
3

)
− x

(
2
3

)
,

(19)

where

g(t, u, v) =
α

t(1 − t)
sin(u+ v)u+ βv +

1
t(1 − t)

[1 + cos(u200 + v30)].

It is easy to see that
|g(t, u, v)| ≤ p(t)|u|+ q(t)|v| + r(t)

with p(t) = α
t(1−t)

, q(t) = β and r(t) = 2
t(1−t)

Clearly, ||p||E = |α|, ||q||L1 =
|β|, ||r||E = 2, and

∑m−2
i=1 |ai|

|1 −
∑m−2

i=1 ai|
=

1 + 1
|1− (1 × 1

3 − 1× 2
3 )|

=
3
2
.

By Theorem 2.7, (19) has at least one solution in

X = {u ∈ C1(0, 1) | u ∈ C[0, 1], lim
t→1

(1 − t)u′(t) and lim
t→0

tu′(t) exist}

provided
5
2
|α|+ |β| < 1.

3 Results at Resonance

In the following we shall give existence results for BVP

x′′(t) = f(t, x(t), x′(t)) + e(t), 0 < t < 1, (20)

x(0) = 0, x(1) = αx(η) (21)

when αη = 1.
Define Lx = −x′′, x ∈ D(L) := {x ∈ W 2,1(0, 1), x(0) = 0, x(1) = αx(η)}. Then

Ker(L) = {ct | c ∈ R}. Hence, (20),(21) is at resonance.
In this case, Leray-Schauder continuation theorem cannot be used.
In [35], Feng and Webb applied the Mawhin continuation theorem to prove the

existence results for (20),(21) at resonance.
THEOREM 3.1 [35]. Let f : [0, 1]× R2 → R be continuous. Assume that
(1) There exist functions p, q, r in L1[0, 1] such that

|f(t, u, v)| ≤ p(t)|u|+ q(t)|v| + r(t), for t ∈ [0, 1] and (u, v) ∈ R2.
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(2) There exists N > 0 such that for v ∈ R with |v| > N , one has

|f(t, u, v)| ≥ −l|u|+ n|v| −M, for t ∈ [0, 1], u ∈ R

where n > l ≥ 0, M ≥ 0.
(3) There exists R > 0 such that for |v| > R one has either

vf(t, vt, v) ≤ 0, t ∈ [0, 1]

or
vf(t, vt, v) ≥ 0, t ∈ [0, 1].

Then, for every continuous function e, the BVP (20),(21) with αη = 1 has at least one
solution in C1[0, 1] provided that

2(||p||1 + 2||q||1) +
l

n
< 1.

In [91], Ma considered the m-point BVP

u′′(t) = f(t, u), 0 < t < 1, (22)

u′(0) = 0, u(1) =
m−2∑

i=1

aiu(ηi), (23)

with the resonance condition
∑m−2

i=1 ai = 1. He developed the methods of lower and
upper solutions by the connectivity properties of the solution set of parameterized
families of compact vector fields.

DEFINITION 3.1. We say that the function x ∈ C2[0, 1] is a upper solution of
(22),(23) if

x′′(t) ≤ f(t, x), 0 < t < 1, (24)

x′(0) ≤ 0, x(1) −
m−2∑

i=1

aix(ηi) ≥ 0, (25)

and y ∈ C2[0, 1] is a lower solution of (22),(23) if

y′′(t) ≥ f(t, y), 0 < t < 1 (26)

y′(0) ≥ 0, y(1) −
m−2∑

i=1

aiy(ηi) ≤ 0. (27)

If the inequalities in (24) and (26) are strict, then x and y are called strict upper and
lower solutions.

Applying the same method to prove Theorem 2.2 in [86] with some obvious changes,
we have



264 Nonlocal Boundary Value Problems

THEOREM 3.2 If f : [0, 1] × R → R is continuous. Assume that x and y are
respectively strict upper and strict lower solutions of (22),(23) satisfying x(t) ≥ y(t)
on [0, 1]. Then (22),(23) has a solution u satisfying

y(t) ≤ u(t) ≤ x(t), t ∈ [0, 1].

THEOREM 3.3 [91]. If f : [0, 1] × R → R is continuous. Assume that one of the
following sets of conditions is fulfilled.

(A1) There exist p, r ∈ L1(0, 1) with ||p||1 < 1
2 such that

|f(t, u)| ≤ p(t)|u|+ r(t).

Assume that x and y are strict upper solution and strict lower solution of (22),(23)
satisfying x(t) ≤ y(t) on [0, 1].

(A2) There exist a strict lower solution α and a strict upper solution β such that

α(t) < x(t) < y(t) < β(t), t ∈ [0, 1].

Then (22),(23) has a solution u satisfying

x(tu) ≤ u(tu) ≤ y(tu), for some tu ∈ [0, 1].

4 Positive Solutions of Multi-Point BVPs

In this section, we discuss the existence and multiplicity of positive solutions of nonlin-
ear multi-point boundary value problems. There is much attention focused on question
of positive solutions of BVPs for ordinary differential equations. Much of the interest is
due to the applicability of certain Krasnosel’skii fixed point theorem. Here we present
some of the results on positive solutions of some nonlocal problems.

Consider the differential equation

x′′ + a(t)f(x) = 0, t ∈ (0, 1), (28)

x(0) = 0, x(1) = αx(η), (29)

where η ∈ (0, 1) is a given constant, and a, f satisfy
(C1) a : [0, 1] → [0,∞) is continuous and a(t) 6 ≡0 on [0, 1];
(C2) f : [0,∞) → [0,∞) is continuous.

In [77], Ma gave the following existence result for positive solutions to (28),(29) by
using the Krasnosel’skii fixed point theorem, the fixed point index theory and the fact
that (28),(29) is equivalent to the integral equation

x(t) = −
∫ t

0

(t− s)a(s)f(x(s))ds − αt

1 − αη

∫ η

0

(η − s)a(s)f(x(s))ds

+
t

1 − αη

∫ 1

0

(1 − s)a(s)f(x(s))ds. (30)
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THEOREM 4.1 [77]. Let (C1) and (C2) hold, and let

0 < η <
1
α
. (31)

Assume that

f0 = lim
u→0+

f(u)
u

, f∞ = lim
u→∞

f(u)
u

(32)

exist. Then (28),(29) has at least one positive solution in the case
(i) f0 = 0, f∞ = ∞ (superlinear case); or

(ii) f0 = ∞, f∞ = 0 (sublinear case).
Let a, b ∈ (0, 1) be such that

∫ b

a

a(s)ds > 0.

Let

k(t, s) =
1

1 − αη
t(1 − s) −

{ αt
1−αη (η − s) s ≤ η

0 s > η
−

{
t− s s ≤ t

0 s > t
(33)

In 2001, Webb [124] used the cone

K = {x ∈ C[0, 1] : x ≥ 0, min{x(t) : a ≤ t ≤ b} ≥ c||x||∞}

to study the existence and multiplicity of positive solutions of (28),(29). By taking

c =
{

min{a, αη, 4a(1− η), α(1− η)}, α < 1
min{aη, 4a(1− αη), η(1− αη)}, α ≥ 1

and finding a function Φ(s) :

k(t, s) ≤ Φ(s), for every t, s ∈ [0, 1],
k(t, s) ≥ cΦ(s), for every s ∈ [0, 1], t ∈ [a, b],

he established the following
THEOREM 4.2 [124]. Let 0 < η < 1

α and let

m =
(

max
0≤t≤1

∫ 1

0

k(t, s)a(s)ds
)−1

, M =
(

min
a≤t≤b

∫ b

a

k(t, s)a(s)ds
)−1

.

Then (28),(29) has at least one solution if either
(h1) 0 ≤ lim supx→0

f(x)
x < m, M < liminfx→∞

f(x)
x ≤ ∞, or

(h2) 0 ≤ lim supx→∞
f(x)

x < m, M < lim infx→0
f(x)

x ≤ ∞,
and has at least two positive solutions if there is ρ > 0 such that either

(E1)





0 ≤ limsupx→∞
f(x)

x < m,

min
{ f(x)

ρ : x ∈ [cρ, ρ]
}
≥ cM, x 6= Tx for x ∈ ∂Ωρ,

0 ≤ limsupx→0
f(x)

x < m,
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or

(E2)





M < lim infx→0
f(x)

x ≤ ∞,

max
{ f(x)

ρ : x ∈ [0, ρ]
}
≤ m, x 6= Tx for x ∈ ∂Ωρ,

M < lim infx→∞
f(x)

x ≤ ∞,

where
Ωρ = {x ∈ K : c||x||∞ ≤ min

a≤t≤b
x(t) < cρ}.

A more general three-point BVP was studied by Ma and Wang. In [102], they
studied the existence of positive solutions of the following BVP

x′′ + a(t)x′(t) + b(t)x(t) + h(t)f(x) = 0, t ∈ (0, 1), (34)

x(0) = 0, x(1) = αx(η) (35)

under the assumptions:
(H1) h : [0, 1] → [0,∞) is continuous and h(t) 6 ≡0 on any subinterval of [0, 1];
(H2) f : [0,∞) → [0,∞) is continuous;
(H3) a : [0, 1] → R, b : [0, 1] → (−∞, 0) are continuous;
(H4) 0 < αφ1(η) < 1, where φ1 be the unique solution of the boundary value

problem
φ′′ + a(t)φ′(t) + b(t)φ(t) = 0, t ∈ (0, 1),

φ(0) = 0, φ(1) = 1.

THEOREM 4.3 [102]. Let (H1),(H2), (H3) and (H4) hold. Then (34),(35) has at
least one positive solution in the case

(i) f0 = 0, f∞ = ∞ (superlinear case); or
(ii) f0 = ∞, f∞ = 0 (sublinear case).
In [84], Ma considered the existence of positive solutions for superlinear semiposi-

tone m-point boundary value problems

(p(t)u′)′ − q(t)u+ λf(t, u) = 0, r < t < R, (36)

au(r) − bp(r)u′(r) =
∑m−2

i=1 αiu(ξi),
cu(R) + dp(R)u′(R) =

∑m−2
i=1 βiu(ξi),

(37)

where p, q ∈ C([r,R], (0,∞)), a, b, c, d ∈ [0,∞), ξi ∈ (r,R), αi, βi ∈ [0,∞) (for i ∈
{1, · · ·m − 2}) are given constants.

Let
(A1) p ∈ C1([r,R], (0,∞)), q ∈ C([r,R], (0,∞)); and
(A2) a, b, c, d ∈ [0,∞) with ac + ad+ bc > 0; αi, βi ∈ [0,∞) for i ∈ {1, ...,m− 2}.

And let ψ and φ be the solutions of the linear problems
{

(p(t)ψ′(t))′ − q(t)ψ(t) = 0,
ψ(r) = b, p(r)ψ′(r) = a

and {
(p(t)φ′(t))′ − q(t)φ(t) = 0,
φ(R) = d, p(R)φ′(R) = −c
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respectively. Set

ρ := p(r)
∣∣∣∣
φ(r) ψ(r)
φ′(r) ψ′(r)

∣∣∣∣ , ∆ :=
∣∣∣∣

−
∑m−2

i=1 αiψ(ξi) ρ−
∑m−2

i=1 αiφ(ξi)
ρ −

∑m−2
i=1 βiψ(ξi) −

∑m−2
i=1 βiφ(ξi)

∣∣∣∣.

THEOREM 4.4 [84]. Let (A1), (A2) hold. Assume that
(A3) ∆ < 0, ρ −

∑m−2
i=1 αiφ(ξi) > 0, ρ −

∑m−2
i=1 βiψ(ξi) > 0;

(A4) f : [r,R] × [0,∞) → R is continuous and there exists an M > 0 such that
f(t, u) ≥ −M for every t ∈ [r,R], u ≥ 0.

(A5) limu→∞
f(t,u)

u = ∞ uniformly on a compact subinterval [α, β] of (r,R).
Then (36),(37) has a positive solution for λ > 0 sufficiently small.

REMARK 4.1. It is worth remarking that (A3) can be reduced to (31) if the special
problem (28),(29) is considered.

REMARK 4.2. The Green’s function in (33) contains two negative terms and one
positive term, it is not a good form in the study of positive solutions. Fortunately, we
can construct Green’s functions for multi-point BVPs (34),(35) and (36),(37) via the
Green’s functions of the corresponding two-point BVPs, see [102, 84]. For example,
(33) can be rewritten as

k(t, s) = G(t, s) +
α

1 − αη
G(η, s), (38)

where

G(t, s) =
{

(1 − t)s, 0 ≤ s ≤ t ≤ 1,
(1 − s)t, 0 ≤ t ≤ s ≤ 1.

Obviously, (38) contains only two nonnegative terms. It is convenient for us to check
the strongly positivity of the related integral operators.

5 Global Continua of Positive Solutions and Nodal

Solutions of Multi-Point BVPs

The results on the existence of positive solutions of the nonlinear multi-point BVP

u′′ + h(t)f(u) = 0,
u(0) = 0, u(1) = αu(η) (39)

has also been introduced in Theorem 4.1. However Theorem 4.1 gives no information
on the interesting problem as to what happens to the norms of positive solutions of
(39) as α varies in [0, 1

η ). Ma and Thompson [100] gave an answer to this question.
Denote by Σ the closure of the set

{(λ, u) ∈ [0,
1
η
) ×C[0, 1] |u is a positive solution of (39)}

in R× C[0, 1], and assume that
(A1) h ∈ C([0, 1], [0,∞)) does not vanish on any subinterval of [0, 1];
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(A2) f ∈ C([0,∞), [0,∞)) and f(s) > 0 for s > 0;
(A3) α > 0 and η ∈ (0, 1) are given constants satisfying

0 < α <
1
η
.

THEOREM 5.1 [100]. Let (A1), (A2) and (A3) hold. Let f0 = 0, f∞ = ∞
(superlinear). Then Σ contains a continuum which joins {0} × C[0, 1] with ( 1

η
, 0).

THEOREM 5.2 [100]. Let (A1), (A2) and (A3) hold. Let f0 = ∞, f∞ = 0
(sublinear). Then Σ contains a continuum which joins {0} ×C[0, 1] with ( 1

η ,∞).

In 2004, Ma and Thompson [97] considered the existence and multiplicity of nodal
solutions (u is called a nodal solution if each zero of u in the open interval (0, 1) is
simple) to the problem

u′′(t) + rh(t)f(u) = 0, t ∈ (0, 1), (40)

u(0) = u(1) = 0 (41)

under the assumptions:
(H1) f ∈ C(R,R) with sf(s) > 0 for s 6= 0;
(H2) there exist f0, f∞ ∈ (0,∞) such that

f0 = lim
|s|→0

f(s)
s
, f∞ = lim

|s|→∞

f(s)
s
.

Let λk be the k-th eigenvalue of

ϕ′′ + λh(t)ϕ = 0, 0 < t < 1,
ϕ(0) = ϕ(1) = 0,

and let ϕk be an eigenfunction corresponding to λk. It is well-known that

0 < λ1 < λ2 < · · · < λk < λk+1 < · · · , lim
k→∞

λk = ∞

and that ϕk has exactly k − 1 zeros in (0, 1). By applying the bifurcation theorem of
Rabinowitz [115], they established the following result.

THEOREM 5.3 [97]. Let (H1), (H2) and (A1) hold. Assume that for some k ∈ N,
either

λk

f∞
< r <

λk

f0
or

λk

f0
< r <

λk

f∞
.

Then (40),(41) has two solutions u+
k and u−k such that u+

k has exactly k − 1 zero in
(0, 1) and is positive near 0, and u−k has exactly k−1 zero in (0, 1) and is negative near
0.
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REMARK 5.1. Since a positive solution can be thought as a nodal solution whose
number of nodal points is 0, Theorem 5.3 generalizes and unifies many known results
on the existence of positive solutions for nonlinear two-point BVPs.

To study the nodal solutions of nonlinear m-point BVPs

u′′ + f(u) = 0, t ∈ (0, 1), (42)

u(0) = 0, u(1) =
m−2∑

i=1

αiu(ηi), (43)

we firstly consider the spectral properties of the linear eigenvalue problem

u′′ + λu = 0, t ∈ (0, 1), (44)

u(0) = 0, u(1) =
m−2∑

i=1

αiu(ηi) (45)

under the assumptions:
(G0) ηi = pi

qi
∈ Q ∩ (0, 1) (i = 1, · · · ,m− 2) with pi, qi ∈ N and (pi, qi) = 1;

(G1) αi ∈ (0,∞), (i = 1, 2, · · · ,m− 2) with 0 <
∑m−2

i=1 αi ≤ 1;
(G2) f ∈ C1(R,R) with sf(s) > 0 for s 6= 0 and f0, f∞ ∈ (0,∞) exist.
THEOREM 5.4 [96]. Let (G0) and (G1) hold, and let

q∗ := min{q̂ ∈ N | Γ(s + 2q̂π) = Γ(s), ∀s ∈ R},

where

Γ(s) = sin(s) −
m−2∑

i=1

αi sin(ηis),

and
l = ]{t | Γ(t) = 0, t ∈ (0, 2q∗π]}

respectively. Assume that the sequence of positive solutions of Γ(s) = 0 is

s1 < s2 < · · · < sn < · · · .

Then
(1) The sequence of positive eigenvalues of (44),(45) are exactly given by

λn = s2n, n = 1, 2, ...;

(2) For each n ∈ K, the eigenfunction corresponding to λn is

ϕn(t) = sin(
√
λn t);

(3) For each n = kl + j with k ∈ N ∪ {0} and j ∈ {1, · · · , l},
√
λlk+j = 2kq∗π +

√
λj .
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THEOREM 5.5 [122] Let (G0) hold and assume that
(G3) αi ∈ (0,∞), (i = 1, 2, · · · ,m− 2) with 0 <

∑m−2
i=1 αi < 1.

Assume that the sequence of positive solutions of Γ(s) = 0 is

s1 < s2 < · · · < sn < · · · .

Then the sequence of positive characteristic values of the operator K (the integral
operator corresponding the problems (44),(45)) is

s21 < s22 < · · · < s2n < · · · .

Moreover, the characteristic values s2n have algebraic multiplicity one, and the corre-
sponding eigenfunction is

ϕn(t) = sin(snt).

Combining the above spectral properties and applying the Rabinowitz global bifur-
cation theorem, Ma and O’Regan proved the following

THEOREM 5.6 [96]. Let

Zn := {t ∈ (0, 1) | sin(
√
λnt) = 0}

and
µn := ]Zn.

Let (G2) and (G3) hold and assume that
(G4) ηi = pi

qi
∈ Q ∩ (0, 1

2
], i = 1, ..., ,m− 2, with pi, qi ∈ N and (pi, qi) = 1.

Assume that either
f0 < λkl+1 < f∞

or
f∞ < λkl+1 < f0

for some k ∈ N ∪ {0}.
Then problem (42),(43) has two solutions u+

kl+1 and u−kl+1; u
+
kl+1 has exactly µkl+1

zeros in (0, 1) and is positive near t = 0, and u−kl+1 has exactly µkl+1 zeros in (0, 1) and
is negative near t = 0.

THEOREM 5.7 [96]. Let (G2) and(G3) and (G4). Assume that either (i) or (ii)
holds for some k ∈ N ∪ {0} and j ∈ {0} ∪ N:

(i) f0 < λkl+1 < · · · < λ(k+j)l+1 < f∞;
(ii) f∞ < λkl+1 < · · · < λ(k+j)l+1 < f0.

Then problem (42),(43) has 2(j+1) solutions u+
(k+i)l+1

, u−
(k+i)l+1

, i = 0, ..., j; u+
(k+i)l+1

has exactly µ(k+i)l+1 zeros in (0, 1) and is positive near t = 0, u−(k+i)l+1 has exactly
µ(k+i)l+1 zeros in (0, 1) and is negative near t = 0.

Very recently, Rynne studied the linear eigenvalue problem (44),(45). He proved
the following
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THEOREM 5.8 [117]. Let m ≥ 3, ηi ∈ (0, 1) and αi > 0 for i = 1, ...,m− 2, with

m−2∑

i=1

αi < 1.

Then the eigenvalues of (44),(45) form a strictly increasing sequence

0 < λ1 < λ1 < · · · < λk < · · ·

with corresponding eigenfunctions φk(x) = sin(λ1/2
k x). In addition

(1) limk→∞ λk = ∞;
(2) φk ∈ T+

k , for each k ≥ 1, and φ1 is strictly positive on (0, 1), where T ν
k (ν = {±})

is the set of function n : [0, 1] → R satisfying
(i) u(0) = 0, νu′(0) > 0 and u′(1) 6= 0;

(ii) u′ has only simple zeros in (0, 1), and has exactly k such zeros;
(iii) u has a zero strictly between each two consecutive zeros of u′.
These spectral properties were used to prove a Rabinowitz-type global bifurcation

theorem for a bifurcation problem related the nonlinear m-point BVP (42),(43). More-
over, he obtained the following

THEOREM 5.9 [117]. Let f ∈ C1(R,R) with f(0) = 0. Assume that f∞ is finite.
If, for some k ∈ N,

(λk − f0)(λk − f∞) < 0.

Then (42),(43) has solutions u±k ∈ T±
k .
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