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Abstract

This paper deals with a free boundary problem for the p-Laplace operator. We
will use the compactness-continuity result for the solution of a non linear Dirichlet
problem, due to D. Bucur and P. Trebeschi, and prove the existence of solution
(which is of class C2) for the associated shape optimization problem. The shape
derivative and Hopf’s comparison principle allow us to give a sufficient condition
of existence for the free boundary problem.

1 Introduction

Let D be an open ball of RN (N ≥ 2) which will contain all the sets we use in this paper.
Given an L∞-function f ≥ 0 which has a compact support K with a nonempty interior.
Let k be a parameter, k > 0. We look for an open and bounded set Ω (⊃ K), such
that there exists a function uΩ, satisfying the following overdetermined problem (FL)

−∆puΩ = −div(|∇uΩ|p−2 ∇uΩ) = f in Ω, uΩ = 0 and |∇uΩ| = k on ∂Ω.

Most of existing results for the problem (FL) assume that p = 2, e.g [7], [2]. For other
values of p, this is an open question.

In [8], the authors showed, by using the moving plane method [6], that if the problem
(FL) admits a solution (Ω, uΩ) such that Ω is of class C2 and uΩ ∈ C2(Ω\K)∩C1

(
Ω

)
,

then all the inward normals at the boundary ∂Ω of Ω meet C (the convex hull of K).
Since we relate the existence of a solution for Problem (FL) to the existence of a
minimum of some shape optimization problem, it is natural to solve this one in a class
of domains with this geometric normal property (see below).

Using the shape derivative, the problem (FL) can be seen as the Euler equation of
the following problem of minimization, e.g. [11]:

(OP ) Find Ω ∈ OC such that J(Ω) = min
ω∈OC

J(ω),

∗Mathematics Subject Classifications: 35A15, 35J65, 49J20.
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where OC = {ω ⊂ D : ω satisfies C-GNP} and

J(ω) =
∫

ω

(
1
p
|∇uω|p − fuω +

kp

p

)
dx

with uω the solution of the Dirichlet problem P (ω, f):

−∆puω = f in ω, uω = 0 on ∂ω.

This paper deals with the problem (FL). We will use the compactness-continuity
result for the solution of a non linear Dirichlet problem, due to Bucur and Trebeschi [4],
and prove the existence of solution (for the shape optimization problem (OP )) which
is of class C2. Then the shape derivative and Hopf’s comparison principle allow us to
give a sufficient condition of existence of solution for our free boundary problem as in
the case of Laplace operator [2].

2 Preliminaries

We need a few definitions.
DEFINITION 1. Let K1 and K2 be two compact subsets of D. We call a Hausdorff

distance of K1 and K2 (or briefly dH(K1, K2)), the following positive number:

dH(K1, K2) = max [ρ(K1, K2), ρ(K2, K1)] ,

where ρ(Ki, Kj) = maxx∈Ki d(x, Kj) i, j = 1, 2 and d(x, Kj) = miny∈Ki |x − y| .
DEFINITION 2. Let ωn be a sequence of open subsets of D and ω be an open

subset of D. Let Kn and K be their complements in D. We say that the sequence ωn

converges in the Hausdorff sense, to ω (or briefly ωn
H−→ ω) if limn→+∞ dH (Kn, K) = 0.

DEFINITION 3. Let ωn be a sequence of open subsets of D and ω be an open
subset of D. We say that the sequence ωn converges in the compact sense, to ω (or
briefly ωn

K−→ ω) if

• every compact subset of ω is included in ωn, for n sufficiently large, and

• every compact subset of ωc is included in ωc
n, for n sufficiently large.

DEFINITION 4. Let ωn be a sequence of open subsets of D and ω be an open subset
of D. We say that the sequence ωn converges in the sense of characteristic functions,
to ω (or briefly ωn

L−→ ω) if χωn converges to χω in Lp
loc(R

N ), p 6= ∞, (χω is the
characteristic function of ω).

LEMMA 1. According to [5], if ωn is a sequence of open subsets of D, there exists
a subsequence (still denoted by ωn) which converges, in the Hausdorff sense, to some
open subset of D.

DEFINITION 5. According to [3], the following holds. Let C be a compact convex
set. The bounded domain ω satisfies C-GNP if (i) ω ⊃ int(C), (ii) ∂ω \ C is locally
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Lipschitz, (iii) for any c ∈ ∂C there is an outward normal ray ∆c such that ∆c ∩ ω is
connected, (iv) for every x ∈ ∂ω \ C the inward normal ray to ω (if exists) meets C.

REMARK 1. If Ω satisfies the C-GNP and C has a nonempty interior, then Ω is
connected.

THEOREM 1. If ωn ∈ OC , then there exists an open subset ω ⊂ D and a subse-
quence (again labeled ωn) such that (i) ωn

H−→ ω, (ii) ωn
K−→ ω, (iii) χωn converges to

χω in L1(D) and (iv) ω ∈ OC .
For the proof of this theorem, see Theorem 3.1 in [3].

DEFINITION 6. Let C be a convex set. We say that an open subset ω has the C-
SP, if (i), (ii), (iii) of Definition 5 are satisfied and if (v) ∀ x ∈ ∂ω\C Kx∩ω = ∅, where
Kx is the closed cone defined by

{
y ∈ RN : (y − x) · (z − x) ≤ 0, ∀z ∈ C

}
.

REMARK 2. Kx is the normal cone to the convex hull of C and {x}.
PROPOSITION 1. ω has the C-GNP if and only if ω satisfies the C-SP.

For the proof of this proposition see Proposition 2.3 in [3].
The aim of the following theorem is to prove the existence of a minimum of J which

is of class C2. This in order to use the shape derivative and so to give a solution to
Problem (FL).

THEOREM 2. Let L be a compact subset of RN . Let fn be a sequence a functions
defined on L. We assume that the functions fn are of class C3 and

∣∣∣∣
∂fn

∂xi

∣∣∣∣ ≤ M,

∣∣∣∣
∂2fn

∂xi∂xj

∣∣∣∣ ≤ M,

∣∣∣∣
∂3fn

∂xi∂xj∂xk

∣∣∣∣ ≤ M,

where M is a strictly positive constant and is independent of n. Define a sequence Ωn,
by Ωn = {x ∈ L : fn (x) > 0} and suppose there exists α > 0 such that |fn (x)| +
|∇fn (x)| ≥ α for all x in L. If the domains Ωn have the C-GNP, then there exists
Ω of class C2 and a subsequence (still denoted by Ωn) such that Ωn converges in the
compact sense, to Ω and J(Ω) = minω∈OC J(ω).

The proof of this theorem uses the following lemma which we prove for the conve-
nience of the reader (see [2]).

LEMMA 2. Let L be a compact subset of RN . Let fn be a sequence of functions
defined as in Theorem 2. Suppose that Ω is an open subset of L such that

Ω = {x ∈ L : h(x) > 0} and ∂Ω = {x ∈ L : h(x) = 0} ,

where h is a continuous function defined in L. If the functions fn converge uniformly
to h in L, then Ωn converges in the compact sense, to Ω.

PROOF.

1. Let K1 be a compact subset of Ω. If β1 = infK1 h, β1 > 0 and there exists n1 ∈ N
such that for all n ≥ n1, |fn − h|L∞(K1)

< β1. This implies that for all x ∈ K1,
fn(x) > h(x) − β1 ≥ 0 and then K1 is contained in Ωn, for n ≥ n1.

2. Let K2 be a compact subset of Ω
c
. By hypothesis, Ω = Ω∪∂Ω = {x ∈ L : h(x) ≥ 0} .
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If β2 = maxK2 h, β2 < 0 and there exists n2 ∈ N such that for all n ≥ n2,

|fn − h|L∞(K2)
< −β2.

This implies that for all x ∈ K2, fn(x) < h(x) − β1 ≤ 0 and then K1 is contained in
Ω

c
n, for n ≥ n2 because {x ∈ L : h(x) < 0} ⊂ Ω

c
n.

REMARK 3. The hypothesis in the preceding theorem about the local regularity
is not too restrictive because of, for instance, results due to G.M. Lieberman [9].

LEMMA 3. (Hopf’s Comparison principle). Let U ⊂ RN be open and bounded,
and v1, v2 ∈ C1

(
U

)
, with ∆pv1 ≤ ∆pv2. Then the following hold.

1. If v1 ≥ v2 on ∂U, then v1 ≥ v2 in U.

2. Suppose v1 > v2 in U, v1 (x) = v2 (x) for some x ∈ ∂U, |∇v2| ≥ γ in U (for
some γ > 0), and U satisfies the interior sphere condition. Then ∂v2

∂ν (x) >
∂v1
∂ν

(x), where ν is the unit outward normal vector on ∂U, at x.

3. If v1 ≥ v2 and v1 6= v2 in U, |∇v2| ≥ γ in U (for some γ > 0), then v1 > v2 in U.

This lemma is proven in ([12], Lemma 3.2, Proposition 3.4.1, 3.4.2)

3 Main Theorems

In this section we state our main results, which will be proven in Section 6.

THEOREM 3. There exists Ω ∈ OC which minimizes the functional J on OC . Ω is
of class C2.

We would like to say that the minimum obtained in Theorem 3 is a solution of
the problem (FL) . It should be noted that, without any assumptions on f and k, the
problem (FL) does not have, in general, a solution. Let us recall two examples of
non-existence for the problem (FL) which can be found in [8].

EXAMPLE 1. Put k = 1. Let (Ω, uΩ) be a solution of (FL) . Then, integration by
parts gives

∫
fdx = −

∫

Ω

div(|∇uΩ(x)|p−2 ∇uΩ) = −
∫

∂Ω

|∇uΩ(x)|p−2 ∇uΩ · ν =
∫

∂Ω

dσ. (1)

Now let f = cχUdx, where c = N (N−1)/N
(

cN

|U|

)1/N

and cN is the area of the unit sphere

in RN . Then (1) gives N (N−1)/N
(

cN

|U|

)1/N

. |U | = |∂Ω|, and by the (strict) inclusion
U ⊂ Ω,

c
1/N
N (N |Ω|)(N−1/N)

> c
1/N
N (N |U |)(N−1/N) = |∂Ω| .

(|Ω| and |∂Ω| are respectively, the volume and the perimeter of Ω). This obviously
contradicts the well-known isoperimetric inequality [1]. Therefore for f as above there
cannot exist a solution to (FL).
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EXAMPLE 2. Let k = 1, and suppose (Ω, uΩ) solves (FL) . Set M = sup f, and let
B (x0, rΩ) be the smallest ball containing Ω. Then MrΩ > N.

This provides us with a test for non-existence. To prove this inequality, one defines

v(x) =
(

p − 1
p

)
r

p/(p−1)
Ω − |x − x0|p/(p−1)

r
1/(p−1)
Ω

.

Then −∆pv = N
rΩ

. Now if MrΩ ≤ N, then

∆puΩ = −f ≥ −M ≥ − N

rΩ
= ∆pv in Ω.

Since also uΩ = 0 ≤ v on ∂Ω, one may apply parts 1. and 3. of Lemma 3 to
deduce that v > uΩ in Ω. (Or at least in some interior neighborhood of ∂Ω) Now let
y ∈ ∂Ω correspond to largest distance to x0, i.e. |y − x0| = rΩ, and observe that the
unit outward normal vector ν at y equals (y − x0) / |y − x0| and that uΩ(y) = v(y) =
0. Invoking part 2. of Lemma 3 one concludes −1 = ∂uΩ

∂ν (y) > ∂v
∂ν (y) = −1, which is a

contradiction.
The aim, now, is to give a sufficient condition on f and k in order that Ω contains

strictly C and that |∇uΩ(x)| = k on ∂Ω. For that purpose, we will need the Hopf’s
comparison principle.

THEOREM 4. Suppose that K has a nonempty interior. Let Ω be a minimum of
the functional J on OC which is of class C2. Let uΩ and uC be, respectively, the solution
of Dirichlet problems P (Ω, f) and P (int(C), f) . Suppose that uC ∈ C1 (C) and uΩ ∈
C1

(
Ω

)
. If C satisfies the interior sphere condition and if

|∇uC| > k on C (2)

then C is strictly contained in Ω and |∇uΩ| = k on ∂Ω.

4 Continuity With Respect to the Domain

As in the linear case, to obtain a continuity result we can use the compact convergence
and the p-stability of the limit domain (we say that an open set Ω is p-stable if for any
u ∈ H1,p

(
RN

)
such that u = 0 a.e. in int(Ωc), we get u|Ω ∈ H1,p

0 (Ω)). Here, we will
use the theorem (see below) obtained by Bucur and Trebeschi where they generalize
the Sverak’s result [10].

In [4], the authors gave a compactness-continuity result for the solution of a non
linear Dirichlet problems (in particular with the p-Laplacian operator) when the domain
varies.

DEFINITION 7. (γp-convergence) We say that a sequence Ωn of open subsets of
D γp-converges to Ω if and only if for any f ∈ H−1,q(D) (1

p + 1
q = 1) the solutions

un of the Dirichlet problems P (Ωn, f) converges strongly in H1,p
0 (D), as n → +∞, to

the solution uΩ of P (Ω, f), (un and uΩ are extended by zero to D).
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Set
Ol (D) = {ω ⊆ D | ]ωc ≤ l}

where ]ωc denotes the number of connected components of the complement of ω.

THEOREM 5. (Bucur-Trebeschi) Let N ≥ p > N − 1. Consider Ωn ∈ Ol (D) and
assume Ωn

H−→ Ω, then Ω ∈ Ol (D) and Ωn γp-converges to Ω.

REMARK 4. If p > N , any sequence of open sets which converge in the Hausdorff
sense is γp-convergent.

COROLLARY 1. Assume that the convex C has a nonempty interior. If Ωn ∈ OC

and Ωn
H−→ Ω, then Ωn γp-converges to Ω.

PROOF. If the interior of C is nonempty and Ωn ∈ OC , according to Remark 1,
Ωn is connected. Therefore Ωn ∈ Ol (D) . Now, if Ωn

H−→ Ω, by the previous theorem
Ωn γp-converges to Ω.

5 Optimality Condition

As it is mentioned in the introduction of this paper, we are going to use the standard
tool of the domain derivative to write down the optimality condition. Let us recall
the definition of the domain derivative, see for instance [11]. We assume that the
minimum Ω of the functional J is of class C2. Let us consider a deformation field
V ∈ C2

(
RN ; RN

)
and set Ωt = {x + tV (x), x ∈ Ω}, t > 0. The application Id + tV is

a perturbation of the identity which is a Lipschitz diffeomorphism for t small enough.
By definition, the derivative of J at Ω in the direction V is

dJ(Ω, V ) = lim
t→0

J(Ωt) − J(Ω)
t

.

As the functional J depends on the domain Ω through the solution of the Dirichlet
problem P (Ω, f), we need to define also the domain derivative of uΩ. If u′

Ω denotes the
domain derivative of uΩ, then u′

Ω = limt→0
uΩt−uΩ

t . Now, if J(Ω) =
∫
Ω h(uΩ)dx, by the

Hadamard formula

dJ(Ω, V ) =
∫

Ω

h′ (uΩ) u′
Ωdx +

∫

∂Ω

h(uΩ)V · n dσ.

Furthermore, we can prove (see [11]) that u′
Ω is a solution of some linear Dirichlet prob-

lem with u′
Ω = −∂uΩ

∂n V ·n on ∂Ω. This, together with uΩ = 0 on ∂Ω and the Hadamard
formula implies

dJ(Ω; V ) =
1
p

∫

∂Ω

(kp − |∇uΩ(x)|p) V.n dσ. (3)

where n is the outward normal vector to ∂Ω.
Now since Ω is the minimum for the functional J , dJ(Ω; V ) ≥ 0 for every admissible

direction V. Therefore
∫

∂Ω
(kp − |∇uΩ(x)|p) V.n dσ ≥ 0 for every admissible direction

V . We mean by admissible displacement the one which allows us to keep the C-GNP
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or the C-SP (according to Proposition 1 above ). Since Ω has the C-GNP, it satisfies
the C-SP. Then

∀x ∈ ∂Ω \ C Kx ∩ Ω = ∅.

For t sufficiently small, let Ωt = Ω + tV (Ω) be the deformation of Ω in the direction
V. Let xt ∈ ∂Ωt. There exists x ∈ ∂Ω s.t xt = x+tV (x). Using the definition of Kxt and
the equality above, it is obvious to get (for t small enough and for every displacement
V : ∀ xt ∈ ∂Ωt \ C Kxt ∩ Ωt = ∅, which means that Ωt satisfies the C-SP (and so
the C-GNP) for every displacement V when t is sufficiently small. Then, using V and
−V, and the fact that the set of the functions V · ν is dense in L2(∂Ω), we deduce

|∇uΩ(x)| = k on ∂Ω \ C. (4)

On the other hand, the admissible directions V on ∂Ω∩∂C must satisfy V (x)·n(x) ≥
0, and one gets

|∇uΩ(x)| ≤ k on ∂Ω ∩ ∂C. (5)

6 Proofs of the Main Theorems

6.1 Proof of Theorem 3

PROOF. Using the variational formulation of the Dirichlet problem P (ω, f), we get∫
ω
|∇uω(x)|pdx =

∫
ω

fuω . If uD denotes the solution of the Dirichlet problem P (D, f), by
the Hopf’s comparison principle (see Lemma 3 part 1.), 0 ≤ uω ≤ uD so

J(ω) = −p − 1
p

∫

ω

fuω +
kp

p

∫

ω

dx ≥ −p − 1
p

∫

D

fuD

and inf J exists. Let Ωn be a minimizing sequence in OC as in Theorem 2.
Since int(C) ⊂ Ωn ⊂ D, according to (i) of Theorem 1 and the continuity of the

inclusion for the Hausdorff topology, there exist an open set Ω, and a subsequence of
Ωn (still denoted by Ωn) such that Ωn

H−→ Ω and int(C) ⊂ Ω ⊂ D. (ii) of Theorem
1 together with Theorem 2 implies that Ω is of class C2. Now by (iii) of Theorem 1,∫
Ωn

dx converges to
∫
Ω

dx, and by Corollary 1,
∫
D

funχΩn converges to
∫

D
fuΩχΩ =∫

Ω
|∇uΩ(x)|pdx. Hence J(Ω) ≤ lim infn→+∞ J(Ωn). According to (iv) of Theorem 1,

Ω ∈ OC , therefore J(Ω) = minω∈OC J(ω).

6.2 Proof of Theorem 4

PROOF. Since the minimum Ω is of class C2, one can use the shape derivative for
the functional J and obtain (4) and (5). We must have ∂Ω 6= ∂C, otherwise Ω =
int(C) and uΩ = uC. But (5) gives |∇uC| = |∇uΩ| ≤ k on ∂Ω, which contradicts
(2) . Now, suppose that ∂Ω ∩ ∂C 6= ∅. Since uΩ and uC are in C1 (C) ,

∆puΩ = −f = ∆puC in int(C) and uΩ ≥ 0 = uC on ∂C,

part 1. of Lemma 3 implies that uΩ ≥ uC in int(C). But uΩ 6= uC in int(C), then
uΩ > uC in int(C). Now, since C satisfies the interior sphere condition, |∇uC| > k on
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int(C) and uΩ = uC on ∂Ω ∩ ∂C, part 2. of Lemma 3, gives ∂uΩ
∂n < ∂uC

∂n on ∂Ω ∩

∂C. Now since uΩ vanishes on ∂Ω, |∇uΩ| = −∂uΩ

∂n
, the previous inequality becomes

|∇uC| < |∇uΩ| on ∂Ω ∩ ∂C. This together with (5) implies |∇uC| < k on ∂Ω ∩ ∂C,
which contradicts (2). It then follows that C is strictly contained in Ω and thus, by (4)

|∇uΩ| = k on ∂Ω.
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