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Abstract

We investigate the interplay between the geometry, boundary conditions and
spectral properties of the Laplace operator under deformation of the domain in
three-dimensional space R3. Using integral equations, we show that the eigen-
functions are jointly holomorphic functions in the spatial and boundary-variation
variables. Some results for the convergence estimates are established.

1 Introduction

Let Ω be a bounded, open subset of R3, with a smooth boundary ∂Ω. We suppose
that this boundary ∂Ω is parameterized by the function: γ(s, t) : [0, π]× [0, 2π] → R3

which is analytic, π-periodic in the variable s, and 2π-periodic in the variable t. Let
us consider the following eigenvalue problem for the Laplace operator in the domain Ω
of the three-dimensional space R3:

−∆u0(x) = λ2
0u0(x), x ∈ Ω, and u0(x) = 0, x ∈ ∂Ω. (1)

Throughout this paper, the domain Ω is supposed to be perturbed according to some
parameter ε and therefore the problem (1) is transformed into the problem (2) as
described in Section 2. The properties of eigenvalue problems under shape deformation
have been the subject of comprehensive studies [5, 11] and the area continues to carry
great importance to this day [1, 3, 4, 7, 8, 10, 9, 12]. A substantial portion of these
investigations relate to properties of smoothness and analyticity of eigenvalues and
eigenfunctions with respect to perturbations. Bruno and Reitich have presented in
[3, Theorem 2, p.172 and Section 3, pp.180-183] some explicit constructions of high-
order boundary perturbation expansions for eigenelements in two dimensions. Their
algorithm is based on certain properties of joint analytic dependence on the boundary
perturbations and spatial variables of the eigenfunctions. The paper is organized as
follows. Section 2 provides the formulation of the main problem in this paper and
contains the application of the integral equations method to the Dirichlet eigenvalue
problem for the Laplace operator. In particular, we rigorously establish the existence
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24 Spectral Properties of Laplace Operator

of an operator-valued function Lε and we establish that this operator define complex
analytic functions of the spatial variable x and the height parameter ε. Finally, in
section 3, in Theorem 3.1 we show that the eigenfunctions uj(ε) of problem (2) are
jointly analytic in (x, ε) and satisfy an uniform asymptotic expansion. We close this
section by showing and proving some results concerning the convergence estimates of
the eigenfunctions with respect to the parameter ε.

2 Problem Description

We start by introducing the analytic function β : [0, π]× [0, 2π] → R3, (s, t) 7→ β(s, t)
to be π-periodic in the variable s and 2π-periodic in the variable t. Let

γε(s, t) = γ(s, t) + εβ(s, t), ε ∈ R.

With this definition, (s, t; ε) 7→ γε(s, t) is an analytic function on [0, π] × [0, 2π] × R,
π-periodic in the variable s, 2π-periodic in the variable t. Now we consider the bounded
domain Ωε in R3 with boundary ∂Ωε parameterized by the function γε(s, t):

∂Ωε = {γε(s, t); (s, t) ∈ [0, π]× [0, 2π]}.

The outward unit normal to ∂Ωε is denoted by νε and for ε = 0 we naturally write
down Ω0 ≡ Ω.

In this paper, we deal with the asymptotic of eigenvalues and eigenfunctions asso-
ciated with the following eigenvalue problem:

{
−∆u(ε) = λ2(ε)u(ε) in Ωε,

u(ε) = 0 on ∂Ωε.
(2)

It is well known that the operator −∆ on L2(Ωε) with domain H2(Ωε) ∩ H1
0(Ωε) is

self-adjoint with compact resolvent. Consequently, its spectrum consists entirely of
isolated, real and positive eigenvalues with finite multiplicity, and there are corre-
sponding eigenfunctions which make up an orthonormal basis of L2(Ωε). Throughout
this paper, we denote by ‖ · ‖ the norm associated to the scalar product < ·, · > on
L2(Ω). Let λ2

0 > 0 denote an eigenvalue of the eigenvalue problem (1) for ε = 0 with
geometric multiplicity m ≥ 1. There exists a small constant r0 > 0 such that λ2

0 is
the unique eigenvalue of (2) for ε = 0 in the set

{
λ2, λ ∈ Dr0 (λ0)

}
, where Dr0 (λ0) is

a disc of center λ0 and radius r0. Let us call the λ0-group the totality of the perturbed
eigenvalues of (2) for ε > 0 generated by ”splitting” from λ2

0.

We now develop a boundary integral formulation for solving the eigenvalue problem
(2). Throughout this paper, we use for simplicity the notation H%

] (]0, π[×]0, 2π[) =
H%(R2/]0, π[×]0, 2π[), for % ∈ R, where H%(R2/]0, π[×]0, 2π[) denotes the classical
Sobolev H%-space on the quotient R2/]0, π[×]0, 2π[. Using change of variables and
integral equations, the following result immediately holds (see [1, 13]).

PROPOSITION 1. Let Lε(λ) : H
−1/2
] (]0, π[×]0, 2π[) → H

1/2
] (]0, π[×]0, 2π[) be
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defined as follows: for f ∈ H
−1/2
] (]0, π[×]0, 2π[),

Lε(λ)f(s, t) = (S(λ)f(γ−1
ε ))(γε(s, t))

=
∫ 2π

0

∫ π

0

G(γε(s, t), γε(s′, t′))|∇γε(s′, t′)|f(s′, t′)ds′dt′.

Then the operator-valued function Lε(λ) is Fredholm analytic with index 0 in C\ iR−.
Moreover, L−1

ε (λ) is a meromorphic function and its poles are in
{
=(z) ≤ 0

}
, where

=(z) means the imaginary part of z and <(z) is the real part.

LEMMA 1. There exist positive numbers ε1, ρ, η, and r0 such that the kernel of
the operator Lε(λ) has the form:

G(γε(s, t), γε(s′, t′))|∇γε(s′, t′)| = g(s, t, s′, t′ε, λ)

+
1∑

p=−1

1∑

k=−1

h(s, t, s′ + kπ, t′ + 2pπ, ε, λ)√
(t − (t′ + 2pπ))2 + (s − (s′ + kπ))2

,

for (s, t, s′, t′, ε, λ) ∈ J , where h(s, t, s′, t′, ε, λ) and g(s, t, s′, t′, ε, λ) are analytic with
respect to (s, t, s′, t′, ε, λ) in J . Here we have put J = {|=(s)| ≤ η, |=(t)| ≤ η; |=(s′)| ≤
η, |=(t′)| ≤ η; |ε| ≤ ε1; λ ∈ Dr0 (λ0);−ρ ≤ <(s),<(s′) ≤ π + ρ;−ρ ≤ <(t), <(t′) ≤
2π + ρ}.

PROOF. Upon replacing x by γε(s, t) and x′ by γε(s′, t′), we immediately obtain
the following result for the kernel of Lε, provided ε1, ρ and η are sufficiently small:

1
4π

eiλ|γε(s,t)−γε(s
′,t′)|

|γε(s, t) − γε(s′, t′)|
=

h(s, t, s′, t′, ε, λ)
((s − s′)2 + (t − t′)2)1/2

,

where h is a function defined in the set J . In fact, we have

h(s, t, s′, t′, ε, λ) = G(γε(s, t), γε(s′, t′))|∇γε(s′, t′)|((s − s′)2 + (t − t′)2)1/2.

Using classical results, and the fact γε is analytic, we see that the function h and its
derivatives are analytic in the set J .

To proceed to the proof, we use some idea little close to that found in the proof of
Theorem 6.1 in [2, pp. 331-333 ]. The fact that γε is π-periodic in the variable s′ and
2π-periodic in the variable t′, there exists a function g(s, t, s′, t′, ε, λ) such that

h(s, t, s′, t′, ε, λ)
((s − s′)2 + (t − t′)2)1/2

=
1∑

p=−1

1∑

k=−1

h(s, t, s′ + kπ, t′ + 2pπ, ε, λ)√
(t − (t′ + 2pπ))2 + (s − (s′ + kπ))2

+g(s, t, s′, t′, ε, λ),

where this function g is given by:

g(s, t, s′, t′, ε, λ) = −
[ 1∑

k=−1

h(s, t, s′ + kπ, t′ − 2π, ε, λ)√
(t − (t′ − 2π))2 + (s − (s′ + kπ))2

+
1∑

k=−1

h(s, t, s′ + kπ, t′ + 2π, ε, λ)√
(t − (t′ + 2π))2 + (s − (s′ + kπ))2

]
. (3)



26 Spectral Properties of Laplace Operator

The analyticity of the function g follows, evidently, from that of h.
Considering the results and notations established in Lemma 1 the following holds.
THEOREM 1. There exists a constant η > 0 and a complex neighborhood V of

0 such that for every function φ(s, t; ε) ∈ H
−1/2
] (]0, π[×]0, 2π[) analytic in (s, t; ε) ∈{

|=(s)|, |=(t)| ≤ η
}
× V, the function Lε(λ)φ(s, t; ε) ∈ H

1/2
] (]0, π[×]0, 2π[) is analytic

with respect to (s, t; ε, λ) ∈
{
|=(s)|, |=(t)| ≤ η

}
× V × Dr0 (λ0) where Dr0 (λ0) is a disc

of center λ0 and radius r0.
PROOF. There is a central difficulty to prove the analytic property of the operator

Lε. This difficulty appears from the spatial singularity of its kernel. To establish this
regularity we may focus , for simplicity, our attention to the change of variables when
we integrate by parts as done in [2, Lemma 6.2]. According to Lemma 1, there exist
functions F and G such that,

Lε(λ)f(s, t) = F (s, t, ε, λ) + G(s, t, ε, λ),

where the function F is given by:

F (s, t, ε, λ) =
1∑

p=−1

∫ 2π

0

∫ π

0

1∑

k=−1

h(s, t, s′ + kπ, t′ + 2pπ, ε, λ)√
(t − (t′ + 2pπ))2 + (s − (s′ + kπ))2

f(s′, t′)ds′dt′.

Next, relation (3) implies that the analyticity of G(s, t, ε, λ) is deduced from that of the
following function:

(s, t, ε, λ) 7→
1∑

k=−1

∫ 2π

0

∫ π

0

h(s, t, s′ + kπ, t′ ± 2π, ε, λ)√
(t − (t′ ± 2π))2 + (s − (s′ + kπ))2

ds′dt′.

To do this, we introduce the function

G1(s, t, t′, ε, λ) =
1∑

k=−1

∫ π

0

h(s, t, s′ + kπ, t′ + 2π, ε, λ)√
(t − (t′ + 2π))2 + (s − (s′ + kπ))2

ds′,

and by a change of variables, we get

G1(s, t, t′, ε, λ) =
∫ 2π

−π

h(s, t, s′, t′ + 2π, ε, λ)√
(t − (t′ + 2π))2 + (s − s′)2

ds′.

Further, if we define

K1(s, t, s′, t′, ε, λ) =
∫ s′

s

h(s, t, z, t′ + 2π, ε, λ)dz,

integration by parts yields

G1(s, t, t′, ε, λ) =
(
(t − t′ − 2π)2 + (s − 2π)2

)−1/2
K1(s, t, 2π, t′, ε, λ)

−
(
(t − t′ − 2π)2 + (s + π)2

)−1/2
K1(s, t,−π, t′, ε, λ)
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+
∫ 2π

−π

(
(t − t′ − 2π)2 + (s − s′)2

)−3/2
K1(s, t, s′, t′, ε, λ)ds′.

Clearly, the function (s, t, ε, λ) →
∫ 2π

0
G1(s, t, t′, ε, λ)dt′ can be extended to a com-

plex analytic function in C × C × V × Dr0 (λ0) and so the analyticity of G(s, t, ε, λ)
holds. We now prove the result for the function F (s, t, ε, λ). As was done for the proof
of G, we first remark that

1∑

k=−1

∫ π

0

h(s, t, s′ + kπ, t′ + 2pπ, ε, λ)√
(t − (t′ + 2pπ))2 + (s − (s′ + kπ))2

ds′

=
∫ 2π

−π

h(s, t, s′, t′ + 2pπ, ε, λ)√
(t − (t′ + 2pπ))2 + (s − s′)2

ds′.

Therefore,

F (s, t, ε, λ) =
1∑

p=−1

∫ 2π

0

∫ 2π

−π

h(s, t, s′, t′ + 2pπ, ε, λ)√
(t − (t′ + 2pπ))2 + (s − s′)2

ds′dt′.

In other words, by change of variables we have

1∑

p=−1

∫ 2π

0

h(s, t, s′, t′ + 2pπ, ε, λ)√
(t − (t′ + 2pπ))2 + (s − s′)2

dt′ =
∫ 4π

−2π

h(s, t, s′, t′, ε, λ)√
(t − t′)2 + (s − s′)2

dt′.

Hence, the following relation is valid

F (s, t, ε, λ) =
∫ 4π

−2π

∫ 2π

−π

h(s, t, s′, t′, ε, λ)√
(t − t′)2 + (s − s′)2

ds′dt′,

and can be extended to a complex analytic function in C × C × V × Dr0 (λ0).

3 Asymptotic Formula

In this section, we develop the asymptotic expansions of the eigenfunctions of (2) when
the parameter ε goes to zero. Next, we give the following Lemma to prove the main
result in this section. Its proof is not difficult if one remark that the surface ∂Ωε is non
characteristic for ∆x and the Cauchy-Kowaleski theorem immediately give the result
(see [1] and [6, Lemma 5.3]) for more details.

LEMMA 2. The functions given by ûi,j(ε)(x) = Lε(λj(ε))∂νui(ε)(γ−1) are jointly
analytic in the variables (x, ε) ∈ K0×] − ε1, ε1[, where K0 is a bounded neighborhood
of Ω0 in R3.

We summarize the main result as follows.
THEOREM 2. Let K0 be a bounded neighborhood of Ω0 in R3. Then there exists

a constant ε2 = ε2(ε1) > 0 smaller than ε1 such that an orthonormal basis of eigen-
functions (uj(ε))j corresponding to the λ0-group, (λ2

j (ε))j, in H1
0 (Ωε) can be chosen
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to depend holomorphically in (x, ε) ∈ K0×] − ε2, ε2[. Moreover these eigenfunctions
satisfy the following asymptotic formulae

uj(ε) = u
(j)
0 +

∑

n≥1

u(j)
n εn.

The family u
(j)
0 builds a basis of eigenfunctions of (1) associated to λ2

0 and normalized
in L2(Ω0).

PROOF. Let ∂νεuj(ε)(γε(s, t)) = qj(ε)(s, t). The family of functions (qj(ε))1≤j≤m(s, t)
(where qj(ε) ∈ H

−1/2
] (]0, π[×]0, 2π[)) builds an orthonormal basis of Ker(Lε(λj(ε)))

(see [1, 6]), which is analytic in R2×] − ε1, ε1[. In other words, Lε(λj(ε))∂νui(ε)(γ−1)
forms a basis of eigenfunctions of the eigenvalue problem (2) associated to λ2

j (ε). Us-
ing the Schmidt orthogonalization process, we construct the desired orthonormal ba-
sis. Clearly, the functions (ûi,j(ε))ij , introduced in Lemma 2, build a basis of the
eigenspaces corresponding to the λ0-group, (λ2

j (ε))j in H1
0 (Ωε). We will now give the

asymptotic expansion of these functions when ε tends to 0. To simplify notations we
drop the subscripts i and j. Integral equations give

û(ε)(x) =
∫ 2π

0

∫ π

0

G(x, γε(s, t))q(ε)(s, t)|∇γε(s, t)|dsdt. (4)

The perturbed eigenvalue λ(ε) lies in a small neighborhood of λ0 for small values of ε.
Then, there exists ε2 > 0 (ε2 ≤ ε1), such that we have the following Taylor expansion

G(x, γε(s, t))|∇γε(s, t)| = G(x, γ(s, t))|∇γ(s, t)| +
∑

k≥1

εkGk(x, γ(s, t); λ), (5)

which holds uniformly in x ∈ K̄0 and (s, t) ∈ [0, π]× [0, 2π]. Using Theorem 1 we write

q(ε)(s, t) = q0(s, t) +
∑

k≥1

εkqk(s, t), (6)

uniformly in (s, t) ∈ [0, π]× [0, 2π]. Substituting the last two asymptotics into (4) we
find

û(ε) = û(0) +
∑

k≥1

εk[
k∑

n=1

∫ 2π

0

∫ π

0

qk−n(s, t)Gn(x, γ(s, t); λ)dsdt]. (7)

Now we use the Schmidt orthogonalization process to construct from the eigenfunctions
(ûj(ε))j an orthonormal basis (uj(ε))j .

LEMMA 3. There exist some positive constants ε3 and C, such that

‖∇(u− u0)‖L2(Ωε) ≤ C|Ωε\Ω0|1/2,

for 0 < ε < ε3. The constant C depends on (λ0, u0), but is otherwise independent of ε.
PROOF. From definition of Ωε and without loss of generality, we can easily found

α1 > 0 such that Ω0 ⊂ Ωε and ∂Ωε ∩ ∂Ω0 = ∅, for 0 < ε < α1.
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Define the open bounded domain Ω̃ε = Ωε\Ω0 and the function w(ε) = u(ε) − u0, for
0 < ε < inf(ε2, α1) where ε2 is given by Theorem 2. Using the equations (1) and (2),
we compute that w(ε) solves:

−∆w = λ2w + (λ2 − λ2
0)u0 in Ω̃ε. (8)

For z ∈ R, we define the function ϑ by

ϑ(z) = λ2z + (λ2 − λ2
0)‖u0‖L∞(Ω0).

Then, we trivially have
|ϑ(w(ε))| ≤ |ϑ(0)|+ λ2|w(ε)|. (9)

Now it turns out from the definition of wε that wε → 0 as ε → 0 together with the
fact that ‖u0‖L∞(Ω0) > 0 justify that there exists 0 < α2 < inf(ε2, α1) such that for
0 < ε < α2,

|wε| ≤ 2‖u0‖L∞(Ω0), for x ∈ Ω̃ε.

Moreover, there exists α3 ≥ 0 such that λ2 ≤ λ2
0 + 1

3
, for 0 ≤ ε ≤ α3. Now, it is useful

to introduce the following function:

ϑ̃(w) = λ2w + (λ2 − λ2
0)u0,

where w is the solution of (8). If we examine each term on the right hand side of (9)
separately, we find out that the first term is bounded by

|ϑ(0)| ≤ 1
3
‖u0‖L∞(Ω0), for 0 < ε < α3.

The second term is bounded by

λ2|wε| ≤ 2(λ2
0 +

1
3
)‖u0‖L∞(Ω0), for 0 < ε < α4 = inf(α2, α3).

These estimates give

‖ϑ̃(wε)‖L∞(Ωε) ≤ (1 + 2λ2
0)‖u0‖L∞(Ω0), for 0 < ε < α4. (10)

Next, the relation (8) implies

−∆w(ε) = ϑ̃(w(ε)).

By integrating by parts and if we use relation (10), we find that the function w(ε)
verifies:

‖∇w‖2
L2(Ω̃ε)

=
∫

Ω̃ε

ϑ̃(w)w̄dx ≤ (1 + 2λ2
0)|Ω̃ε|1/2‖u0‖L∞(Ω0)‖w‖L2(Ω̃ε)

.

So, if we use the fact that w(ε) vanishes in Ω0, then we have

‖∇w‖2
L2(Ωε)

≤ (1 + 2λ2
0)|Ω̃ε|1/2‖u0‖L∞(Ω0)‖w‖L2(Ωε). (11)
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By Poincare’s inequality, there exists some positive constant C(Ωε) such that

‖w‖L2(Ωε) ≤ C(Ωε)‖∇w‖L2(Ωε).

The fact w and ∇w are uniformly bounded on Ωε implies there exists some constant
C1 independent of ε (e.g.[7, p.33]) such that

C(Ωε) ≤ C1, (12)

and (11) becomes ‖∇w‖L2(Ωε) ≤ C1(1 + 2λ2
0)|Ω̃ε|1/2‖u0‖L∞(Ω0). The choice ε3 = α4

and C = C1(1 + 2λ2
0)‖u0‖L∞(Ω0) concludes the proof.

Our main result in this section is the following.
THEOREM 3. Let γ, β and Ωε be defined as in Section 2. Then, there exist some

constant 0 < ε4 ≤ 1/M , M = max |β(s, t)| and some positive constant κ dependent on
λ0, u0, |γ| and M but otherwise independent of ε such that

‖u− u0‖L2(Ωε) ≤ κε1/2, for 0 < ε < ε4.

PROOF. For simplicity we can suppose that Ω0 is a ball with radius %0 > 0 in R3.
It then follows that |γ(s, t)| = %0. It is not hard to see that, in spherical coordinates
(%, θ, φ), there exists a regular function Υ : [0, π]× [0, 2π] → R+; Υ(θ, φ) = |β(θ, φ)|
such that the boundary ∂Ωε can be re-parameterized by

% = %(ε, θ, φ) = %0 + εΥ(θ, φ), (θ, φ) ∈ [0, π]× [0, 2π].

Therefore

|Ω̃ε| =
∫ 2π

0

∫ π

0

[
∫ %0+εΥ(θ,φ)

%0

%2 sin(θ)d%]dθdφ =
1
3

∫ 2π

0

∫ π

0

[ε3Υ3(θ, φ)

+3ε%2
0Υ(θ, φ) + 3ε2%0Υ2(θ, φ)] sin(θ)dθdφ. (13)

For ε < ε4 = inf(ε3, 1/M ), we can write: ε2 ≤ ε/M . Then

εiM i ≤ εM for i ∈ {2, 3}.

Consequently the equality (13) gives

|Ω̃ε| ≤
4π

3
M (1 + 3%0 + 3%2

0)ε. (14)

By Poincare’s inequality and Lemma 3 we write

‖u − u0‖L2(Ωε) ≤ C(Ωε)C|Ω̃ε|1/2.

Finally, we obtain the desired result if we consider the relations (12) and (14) and if

we choose the constant κ = 2CC1

√
π
3
M (1 + 3%0 + 3%2

0).
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