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Abstract

This paper is concerned with positive solutions to BVPs for a class of singular
second order differential equation. By the classical method of elliptic regulariza-
tion, we prove the existence of positive solutions and generalize a recent work.

1 Introduction

This paper is concerned with the existence of positive solutions for a class of singular
second order differential equation

ϕ′′ − λ
|ϕ′|2

ϕ
+ f(t)(1 + |ϕ′|2)m = 0, 0 < t < 1, (1)

with one of the following boundary conditions

ϕ(1) = ϕ(0) = 0, (2)

ϕ(1) = ϕ(0) = ϕ′(1) = ϕ′(0) = 0, (3)

where λ > 0, m ∈ (−∞, 0)∪ (0, 1
2 ], f(t) ∈ C1[0, 1] and f(t) > 0 on [0, 1].

It is well known that boundary value problems (BVPs) for singular second order
ordinary differential equations arise in the fields of gas dynamics, flow mechanics, theory
of boundary layer, and so on. In recent years, singular second order ordinary differential
equations with dependence on the first order derivative have been studied extensively,
see for example [1-8] and references therein where some general existence results were
obtained. We point out that the equation considered here is not in their considerations
since it does not satisfy some sufficient conditions of those papers. Our considerations
were motivated by [9] in which the authors studied (1) with m = 0, f ≡ 1 and the
boundary conditions: ϕ(1) = ϕ′(0) = 0, and, by ordinary differential equation theories,
obtained a decreasing positive solution. Recently, in [10] the authors studied (1) with
m = 0 and the boundary conditions (2) or (3), and, by the classical method of elliptic
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regularization, obtained a positive solution which is not decreasing. In the present
paper, we consider (1) and generalize the existence results of [10].

We say ϕ ∈ C2(0, 1) ∩ C[0, 1] is a solution to BVP (1),(2) if it is positive in (0, 1)
and satisfies (1) and (2). Similarly, we say ϕ ∈ C2(0, 1)∩C1[0, 1] is a solution to BVP
(1),(3) if it is positive in (0, 1) and satisfies (1) and (3).

Our main results are the following

THEOREM 1. Let λ > 0, f(t) ∈ C1[0, 1] and f > 0 on [0, 1]. If m ∈ (−∞, 0)∪(0, 1
2 )

or m = 1
2 and max[0,1] f < 1, then BVP (1),(2) admits at least a solution.

THEOREM 2. Let λ > 1
2
, f(t) ∈ C1[0, 1] and f > 0 on [0, 1]. If m ∈ (−∞, 0)∪(0, 1

2
)

or m = 1
2 and max[0,1] f < 1, then BVP (1),(3) admits at least a solution.

2 Proofs of Theorem 1 and Theorem 2

We will use the classical method of elliptic regularization to prove Theorem 1. For this,
we consider the following regularized problem:

ϕ′′ − λ
|ϕ′|2

Iε(ϕ)
sgnε(ϕ) + f(t)(1 + |ϕ′|2)m = 0, 0 < t < 1,

ϕ(1) = ϕ(0) = ε,

where ε ∈ (0, 1), Iε(s) and sgnε(s) can be defined as follows: Iε(s) = s if s ≥ ε,
Iε(s) = s2+ε2

2ε if −ε < s < ε and Iε(s) = −s if s ≤ −ε, and sgnε(s) = 1 if s ≥ ε,
sgnε(s) = 2s

ε − s2

ε2 if 0 ≤ s < ε, sgnε(s) = 2s
ε + s2

ε2 if −ε ≤ s < 0 and sgnε(s) = −1 if
s < −ε. Clearly, Iε(s), sgnε(s) ∈ C1(R), and Iε(s) ≥ ε/2, 1 ≥ |sgnε(s)|, sgnε(s)sgn(s) ≥
0 in R.

For m ≤ 1
2 and λ > 0, it follows from Theorem 4.1 of Chapter 7 in [11] that for any

fixed ε ∈ (0, 1), the above regularized problem admits a unique classical solution ϕε ∈
C2(0, 1)∩C1[0, 1]. By the maximal principle, it is easy to see that ϕε(t) ≥ ε on [0, 1].
Thus ϕε satisfies

ϕ′′
ε − λ

|ϕ′
ε|2

ϕε
+ f(t)(1 + |ϕ′

ε|2)m = 0, 0 < t < 1, (4)

ϕε(0) = ϕε(1) = ε.

Note that (4) is equivalent to

(∫ ϕ′
ε

0

1
(1 + s2)m

ds

)′

− λ
|ϕ′

ε|2

ϕε(1 + |ϕ′
ε|2)m

+ f(t) = 0, 0 < t < 1, (5)

LEMMA 1. Under the assumptions of Theorem 1, for all ε ∈ (0, 1) there exists a
positive constant D independent of ε such that

|ϕ′
ε(t)| ≤ D, t ∈ [0, 1].
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PROOF. Noticing ϕε(1) = ϕε(0) = ε and ϕε(t) ≥ ε for all t ∈ [0, 1], we have

ϕ′
ε(0) = lim

t→0+

ϕε(t) − ε

t
≥ 0,

ϕ′
ε(1) = lim

t→1−

ϕε(t) − ε

t − 1
≤ 0.

On the other hand, it follows from (5) that

( ∫ ϕ′
ε

0

1
(1 + s2)m

ds

)′

+ A ≥ 0, 0 < t < 1,

where A
∆= max[0,1] f , i.e.

(∫ ϕ′
ε

0

1
(1 + s2)m

ds + At

)′

≥ 0, 0 < t < 1.

Thus the function
∫ ϕ′

ε

0
1

(1+s2)m ds + At is non-decreasing on [0, 1], therefore

A ≥
∫ ϕ′

ε(1)

0

1
(1 + s2)m

ds + A

≥
∫ ϕ′

ε(t)

0

1
(1 + s2)m

ds + At

≥
∫ ϕ′

ε(0)

0

1
(1 + s2)m

ds ≥ 0, t ∈ [0, 1],

and hence ∣∣∣∣
∫ ϕ′

ε(t)

0

1
(1 + s2)m

ds

∣∣∣∣ ≤ A, t ∈ [0, 1].

Case 1. m < 0. In the case, using the inequality |
∫ z

0
1

(1+s2)k ds| ≥ |z|, k < 0, z ∈ R,
we obtain

|ϕ′
ε(t)| ≤ A, t ∈ [0, 1].

Case 2. m ∈ (0, 1
2
]. Using the inequality

∣∣∣∣
z

(1 + z2)k

∣∣∣∣ ≤
∣∣∣∣
∫ z

0

1
(1 + s2)k

ds

∣∣∣∣, k > 0, z ∈ R,

we obtain ∣∣∣∣
ϕ′

ε(t)
(1 + |ϕ′

ε(t)|2)m

∣∣∣∣ ≤ A, t ∈ [0, 1],

i.e.
|ϕ′

ε(t)| ≤ A(1 + |ϕ′
ε(t)|2)m, t ∈ [0, 1]. (6)
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If m ∈ (0, 1
2 ), by the inequality (a + b)r ≤ ar + br(a, b ≥ 0, r ∈ [0, 1]) and Young’s

inequality, we have

(1 + |ϕ′
ε|2)m ≤ |ϕ′

ε|2m + 1 ≤ 1
2A

|ϕ′
ε|+ C, t ∈ [0, 1],

where C is a positive constant independent of ε, and hence it follows from (6) that

|ϕ′
ε| ≤ A(1 + |ϕ′

ε|2)m ≤ 1
2
|ϕ′

ε| + C, t ∈ [0, 1],

therefore
|ϕ′

ε| ≤ C, t ∈ [0, 1].

If m = 1
2
, we have A = max[0,1] f < 1. Then it follows from (6) that

|ϕ′
ε| ≤

A√
1 − A2

, t ∈ [0, 1].

This completes the proof of Lemma 1.
Denote Dm and dm by

Dm = max{1, (1 + D2)m}, dm = min{1, (1 + D2)m},

where D is the same as that of Lemma 1. From (4) and Lemma 1 we obtain

−ϕ′′
ε + λ

|ϕ′
ε|2

ϕε
− dm min

[0,1]
f ≥ 0, t ∈ (0, 1). (7)

−ϕ′′
ε + λ

|ϕ′
ε|2

ϕε
− Dm max

[0,1]
f ≤ 0, t ∈ (0, 1). (8)

To obtain the uniform bounds of ϕε, we need to establish the following comparison
theorem.

PROPOSITION 2. Let ϕi ∈ C2(0, 1) ∩ C[0, 1] and ϕi > 0 on [0, 1](i = 1, 2). If
ϕ2 ≥ ϕ1 for t = 0, 1, and

−ϕ′′
2 + %

|ϕ′
2|2

ϕ2
− θ ≥ 0, t ∈ (0, 1), (9)

−ϕ′′
1 + %

|ϕ′
1|2

ϕ1
− θ ≤ 0, t ∈ (0, 1), (10)

where % and θ are positive constants, then

ϕ2(t) ≥ ϕ1(t), t ∈ [0, 1].

PROOF. From (9) and (10), we have

(ϕ1−%
2

1 − %

)′′
≤ − θ

ϕ%
2

(% 6= 1),
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(
ln(ϕ2)

)′′
≤ −

θ

ϕ2
(% = 1),

and (ϕ1−%
1

1 − %

)′′
≥ − θ

ϕ%
1

(% 6= 1),

(
ln(ϕ1)

)′′
≥ − θ

ϕ1
(% = 1).

Combining the above inequalities, we obtain

w′′ ≤ θ
( 1

ϕ%
1

− 1
ϕ%

2

)
, 0 < t < 1, (11)

where w : [0, 1] → R is defined as follows: w = ϕ1−%
2

1−% − ϕ1−%
1

1−% if % 6= 1; w = ln(ϕ2)−ln(ϕ1)
if % = 1. Clearly, w ∈ C2(0, 1)∩ C[0, 1].

To prove the proposition, we argue by contradiction and assume that there exists
a point t0 of (0, 1) such that ϕ2(t0) − ϕ1(t0) < 0. From the assumption, it is easy to
see that w reaches a minimum at some point t∗ of (0, 1) such that

w(t∗) = min
t∈[0,1]

w(t) < 0, (12)

w′′(t∗) ≥ 0. (13)

Combining (13) with (11), we have

θ
( 1

ϕ%
1(t∗)

− 1
ϕ%

2(t∗)

)
≥ 0.

This implies ϕ2(t∗) ≥ ϕ1(t∗). However, from (12) we find that ϕ2(t∗) < ϕ1(t∗), a
contradiction. This completes our proof.

LEMMA 3. Under the assumptions of Theorem 1, for all ε ∈ (0, 1) there exists a
positive constant C independent of ε such that

ϕε(t) ≥ C[t(1 − t) + ε1/2]2, t ∈ [0, 1].

PROOF. Let wε = C[t(1 − t) + ε1/2]2, where C ∈ (0, 1] will be determined later.
By Proposition 2 and noticing (7), it suffices to show that

−w′′
ε + λ

|w′
ε|2

wε
− dm min

[0,1]
f ≤ 0, t ∈ (0, 1), (14)

for some sufficiently small positive constant C independent of ε. Simple calculation
shows that

w′
ε = 2C[t(1− t) + ε1/2](1− 2t),

w′′
ε = 2C(1− 2t)2 − 4C[t(1− t) + ε1/2],
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and

−w′′
ε + λ

|w′
ε|2

wε
− dm min

[0,1]
f = − 2C(1 − 2t)2 + 4C[t(1− t) + ε1/2]

+ 4Cλ(1 − 2t)2 − dm min
[0,1]

f

≤4C
(
2 + λ

)
− dm min

[0,1]
f, 0 < t < 1.

Choosing a positive constant C such that

C ≤ min
{

1,
dm min[0,1] f

4(2 + λ)

}
,

we find that (14) holds. This completes our proof.
From (7), (8), Lemma 1 and Lemma 3, we derive that for any δ ∈ (0, 1/2) there

exists a positive constant Cδ independent of ε such that

|ϕ′′
ε (t)| ≤ Cδ, δ ≤ t ≤ 1− δ. (15)

Differentiating (4) with respect to t we get

ϕ′′′
ε =λ

2ϕεϕ
′
εϕ

′′
ε − (ϕ′

ε)3

ϕ2
ε

− 2mf(t)(1 + |ϕ′
ε|2)m−1ϕ′

εϕ
′′
ε

− f ′(t)(1 + |ϕ′
ε|2)m, 0 < t < 1.

By (15), Lemma 1 and Lemma 3, we derive that for any δ ∈ (0, 1/2), there exists a
positive constant Cδ independent of ε such that

|ϕ′′′
ε (t)| ≤ Cδ, δ ≤ t ≤ 1 − δ.

From this and Lemma 1 and using Alzelá-Ascoli theorem and diagonal sequential
process, we see that there exist a subsequence {ϕεn} of {ϕε} and a function ϕ ∈
C2(0, 1) ∩ C[0, 1] such that, as εn → 0,

ϕεn → ϕ, uniformly in C[0, 1],

ϕεn → ϕ, uniformly in C2[δ, 1 − δ].

Combining these with (4) and the boundary conditions satisfied by ϕεn , we find that
ϕ satisfies (1) and (2). By Lemma 3, we have

ϕ(t) ≥ C[t(1− t)]2, t ∈ [0, 1], (16)

therefore ϕ > 0 in (0,1), and thus ϕ is a solution to BVP (1), (2). This completes the
proof of Theorem 1.

PROOF OF THEOREM 2. From Theorem 1, we see that for any λ > 0, BVP
(1),(2) admits a solution ϕ which can be approximated by ϕεn satisfying (4) (or (5))
with ε = εn. Hence it suffices to show ϕ satisfies ϕ′(1) = ϕ′(0) = 0 for λ > 1

2 . We
claim that if λ > 1

2 , then there exist positive constants C independent of εn such that

ϕεn(t) ≤ C(1 + ε1/2
n − t)2 on [0, 1], (17)
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ϕεn(t) ≤ C(t + ε1/2
n )2 on [0, 1]. (18)

We first show (17). Let vεn = C(1 + ε
1/2
n − t)2, where C ≥ 1 will be determined later.

A calculation shows that

−v′′εn
+ λ

|v′εn
|2

vεn

− Dm max
[0,1]

f = 2C
(
2λ − 1

)
− Dm max

[0,1]
f, 0 < t < 1.

Choosing a positive constant C such that

C ≥ max
{

1,
Dm max[0,1] f

2(2λ − 1)

}

and noticing λ > 1
2 , we find that

−v′′εn
+ λ

|v′εn
|2

vεn

− Dm max
[0,1]

f ≥ 0, 0 < t < 1,

and then, by Proposition 2 and (8), we obtain (17). Similarly the claim (18) can be
proved. Letting εn → 0 in (17) and (18) to yield

ϕ(t) ≤ C min{t2, (1 − t)2}, t ∈ [0, 1].

Combining this with (16) we immediately obtain ϕ′(1) = ϕ′(0) = 0. Thus the proof of
Theorem 2 is completed.
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[6] S. Staněk, Positive solutions for singular semipositone boundary value porblems,
Math. Comput. Model., 33(2001), 341–351.



198 Boundary Value Problems

[7] D. Q. Jiang, Upper and lower solutions method and a singular boundary value
problem, Z. Angew. Math. Mech., 82(7) (2002), 481–490.

[8] D. Bonheure, J. M. Gomes and L. Sanchez, Positive solutions of a second order
singular ordinary differential euqation, Nonlinear Anal. TMA., 61(2005), 1383–
1399.

[9] M. Bertsch and M. Ughi, Positivity properties of viscosity solutions of a degenerate
parabolic equation, Nonlinear Anal., 14(1990) 571–592.

[10] W. S. Zhou and X. D. Wei, Positive solutions to BVPs for a singular differential
equation, Nonlinear Anal. TMA., 67(2007), 609–617.

[11] Y. Z. Chen and L. C. Wu, Second Order Elliptic Equations and Elliptic Systems,
Science Press, Beijing, 1997. (in Chinese) English edition is translated from the
1991 Chinese original by Bei Hu. Translations of Mathematical Monographs, 174.
American Mathematical Society, Providence, RI, 1998.


