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Abstract

We give a short proof of a formula of Poincaré-Bertrand in the setting of
theory of time-harmonic electromagnetic fields on a piece-wise Liapunov surface,
as well as for some versions of quaternionic analysis.

1 Introduction

Let Γ be a closed Liapunov curve in the complex plane and let f be a Hölder function
on Γ × Γ. Then, everywhere on Γ,

1
πi

∫

Γτ

dτ

τ − t
· 1
πi

∫

Γτ1

f(τ, τ1)dτ1

τ1 − τ
= f(t, t) +

1
πi

∫

Γτ1

dτ1 ·
1
πi

∫

Γτ

f(τ, τ1)dτ

(τ − t)(τ1 − τ )
, (1)

which is usually called the Poincaré-Bertrand formula, the integrals being understood
in the sense of the Cauchy principal value. The Poincaré-Bertrand formula plays a
significant role in the theory of one-dimensional singular integral equations with the
Cauchy kernel and its numerous applications. Indeed, all the integrals in (1) contain
the (singular) Cauchy kernel, and its importance for one-dimensional complex analysis
is obvious.

It is known that the theory of solutions of the Maxwell equations reduces, in some
degenerate cases, to that of complex holomorphic functions. Hence, one may consider
the former to be a generalization of the latter. At the same time, not too many facts
from the holomorphic function theory have their extensions onto the Maxwell equations
theory. In the present paper we study a number of generalization of (1). In realizing this
study we follow the approach first presented in [2] and developed in [3], [8], [11] which
are based on the intimate relation between time-harmonic electromagnetic fields and
quaternion-valued α-hyperholomorphic functions, see book [3]. This approach proved
to be quite efficient and heuristic since it allows to exploit a profound similarity between
holomorphic functions in one variable and α-hyperholomorphic functions. The paper
is organized as follows. In Section 2 the reader can find the Poincaré-Bertrand formula
for time-harmonic electromagnetic fields theory, i.e., theory of solutions of the time-
harmonic Maxwell equations. The proof can be found in the Section 6, and is based on
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the contents of Sections 3-5. In Section 4 we present the Poincaré-Bertrand formula for
α-hyperholomorphic quaternionic functional theory on a piece-wise Liapunov surface.

Note that the Poincaré-Bertrand formula on closed piece-wise smooth manifold in
Cn for Bochner-Martinelli type singular integrals was studied, for example, by Zhong
and Chen [12] as well as Lin and Qiu [6].

2 Time Harmonic Electromagnetic Fields Theory and

the Cauchy-Maxwell Integral

Let Ω be a domain, i.e., a connected open set in the three-dimensional Euclidean space
R3, Γ := ∂Ω be its boundary. We consider the following system of time-harmonic
Maxwell equations:

rot ~H = σ ~E, rot ~E = iωµ ~H, (2)

div ~H = 0, div ~E = 0, (3)

where ~E, ~H : Ω ⊂ R3 → C3; σ := σ∗ − iωε is a complex electrical conductivity;
ε is a dielectric constant; µ is a magnetic permeability; σ∗ is a medium electrical
conductivity being inverse to its electrical resistivity: σ∗ = 1

ρ
. If ~E and ~H form a

solution of the time-harmonic Maxwell equations in Ω, then (~E, ~H) is called a time-
harmonic electromagnetic field.

Set

M :=
(

σ −rot
rot −iωµ

)
,

then the equations (2) become

M
[(

~E
~H

)]
= 0.

The operator M acts on the space C1(Ω, C3 × C3). Recalling equations (3) we will
consider, for k ∈ N ∪ {0},

Ĉk := Ĉk(Ω, C3 × C3) :=
{(

~f
~g

)
∈ Ck(Ω, C3 × C3) | div ~f = div ~g = 0

}
.

The operator
M̂ := M|Ĉ1 ,

i.e., the restriction of M onto Ĉ1, will be termed “the time-harmonic Maxwell opera-
tor”. For more details see, e.g., [3], [4].

The integral

KM[~g](x) :=
∫

Γ

KM(τ, x) ? ~g(τ )ds, x /∈ Γ,

plays the role of the Cauchy-type integral in the theory of time-harmonic electromag-

netic fields with ~g :=
(

~e
~h

)
: Γ → C3 × C3 (see [8]) being a pair of integrable



B. Schneider 141

vector fields and we shall call it the Cauchy-Maxwell-type integral, where KM is time-
harmonic Cauchy-Maxwell kernel in a formula (11) in [8], definition of ”?” can be seen,
e.g., in reference [8], ds is an element of the surface area in R3.

Let Hµ(Γ, C3) := {~f ∈ C3 : |~f(t1) − ~f (t2)| ≤ Lf · |t1 − t2|µ; ∀{t1, t2} ⊂ Γ, Lf =
const} denote the class of functions satisfying the Hölder condition with the exponent
0 < µ ≤ 1. Here |~f | means the Euclidean norm in C3 = R6 while |t| is the Euclidean
norm in R3. Let Γ be a surface in R3 which contains a finite number of conical points
and a finite number of non-intersecting edges such that none of the edges contain any
of conical points. If the complement (in Γ) of the union of conical points and edges, is
a Liapunov surface, then we shall refer to Γ as a piece-wise Liapunov surface in R3.

THEOREM 2.1 (Poincaré-Bertrand formula for time-harmonic electromagnetic the-
ory). Let Ω be a bounded domain in R3 with the piece-wise Liapunov boundary. Let
~e,~h ∈ Hµ(Γ × Γ; C3), 0 < µ < 1. Then the following equalities hold, everywhere on Γ:
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where the integrals being understood in the sense of the Cauchy principal value, γ(t) :=
η(t)
4π

; η(t) is the measure of a solid angle of the tangential conical surface at the point
t or is the solid measure of the tangential dihedral angle at the point t; ”�” and Uα

were defined in [8].

The proof will be presented in Section 6. Note that if Γ is a Liapunov surface, then
this Theorem coincides with the result in paper [8].
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3 Basic Facts of Hyperholomorphic Function Theory

In this section, we provide some background on quaternionic analysis needed in this
paper. For more information, we refer the reader to [1], [3].

Let H(C) be the set of complex quaternions, it means that each quaternion a is
represented in the form a =

∑3
k=0 akik, with the standard basis {i0 := 1, i1, i2, i3},

where {ak : k ∈ N0
3 := N3 ∪ {0}; N3 := {1, 2, 3}} ⊂ C. We use the Euclidean norm |a|

in H(C), defined by |a| :=
√∑3

k=0 |ak|2.
Let λ ∈ C\{0}, and let α be its complex square root: α ∈ C, α2 = λ. The function

f : Ω ⊂ R3 → H(C) is called left-α-hyperholomorphic if

Dαf := αf + i1
∂

∂x1
f + i2

∂

∂x2
f + i3

∂

∂x3
f = 0.

Setting

Dαf := αf − i1
∂

∂x1
f − i2

∂

∂x2
f − i3

∂

∂x3
f.

Let α ∈ C and let θα be the fundamental solution of the Helmholtz operator ∆λ :=
∆ + Iλ, where ∆ :=

∑3
k=1

∂2

∂x2
k

and I is the identity operator. Then the fundamental
solution of the operator Dα, Kα, is given by the formula (see [3]):

Kα(x) := −Dαθα(x),

and its explicit form can be seen, e.g., in [11]. We shall use the notation Cp(Ω, H(C))
for p ∈ N ∪ {0}, which has the usual component-wise meaning.

Let σx :=
∑3

k=1(−1)k−1ikdx[k], where dx[k] denotes as usual the differential form
dx1 ∧ dx2 ∧ dx3 with the factor dxk omitted. Let Ω = Ω+ be a domain in R3 with
the boundary Γ which is assumed to be a piece-wise Liapunov surface; denote Ω− :=
R3 \ (Ω+ ∪ Γ). If f is a Hölder function then its α-hyperholomorphic left Cauchy-type
integral is defined (see [3]):

Kα[f ](x) :=
∫

Γ

Kα(τ − x) · στ · f(τ ), x ∈ Ω±.

For more information about α-hyperholomorphic functions, we refer the reader to [1],
[3], [9].

4 The Poincaré-Bertrand Formula for α - Hyper-
holomorphic Function Theory on a Piecewise Lia-

punov Surface

We begin with the following result.
LEMMA 4.1. Let Ω be a bounded domain in R3 with piece-wise Liapunov surface.

For t ∈ Γ, ∫

Γ

Kα(τ − t)στ = γ(t), (4)
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where the integral being understood in the sense of the Cauchy principal value, γ(t) :=
η(t)
4π ; η(t) is the measure of a solid angle of the tangential conical surface at the point

t or is the solid measure of the tangential dihedral angle at the point t.

PROOF. The proof is a direct computation from the Sokhotski-Plemelj theorem
[10, Theorem 2.1] and the Cauchy’s integral formula [1, Theorem 3.28], and will be
omitted.

LEMMA 4.2. Let Ω be a bounded domain in R3 with piece-wise Liapunov surface.
Suppose f(τ1, τ ) := f0(τ1, τ )|τ1 − τ |−ν, 0 ≤ ν < 2, and f0 ∈ Hµ(Γ × Γ, H(C)). Then
the following formula holds for interchange of the order of integration for all t ∈ Γ:

∫

Γτ

∫

Γτ1

Kα(τ − t)στf(τ1, τ )στ1 =
∫

Γτ1

∫

Γτ

Kα(τ − t)στ f(τ1, τ )στ1 .

PROOF. The proof is completely analogous to [5, §22], the only need to do is using
the (4) instead of 1

2 for the case of smooth boundary.

LEMMA 4.3. Let Ω be a bounded domain in R3 with piece-wise Liapunov surface.
If t, τ1 ∈ Γ, t 6= τ1 then

∫

Γτ

Kα(τ − t)στKα(τ − τ1) = 0.

PROOF. The argument can be proved by analogy with [7, Lemma 3], taking into
account the Sokhotski-Plemelj formulas [11, Theorem 3.1] and the Cauchy’s integral
formula [1, Theorem 3.28].

THEOREM 4.4 (Poincaré-Bertrand formula for α-hyperholomorphic function the-
ory with α ∈ C). Let Ω be a bounded domain in R3 with piece-wise Liapunov boundary.
Assume that f ∈ Hµ(Γ × Γ; H(C)), where 0 < µ ≤ 1. Then for all t ∈ Γ,

∫

Γτ

∫

Γτ1

Kα(τ − t)στKα(τ1 − τ )στ1f(τ1, τ )

=
∫

Γτ1

∫

Γτ

Kα(τ − t)στKα(τ1 − τ )στ1f(τ1, τ ) + γ2(t)f(t, t). (5)

PROOF. The proof is based on Lemmas 4.1, 4.2 and 4.3. It is almost analogous to
[8, Theorem 2.7].

5 Function Theory for the Quaternionic Maxwell Op-
erator

We start this Section with a brief description of the relations between the time-harmonic
electromagnetic fields theory and the theory of α-hyperholomorphic functions. One can
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find more about this in [3], [8]. Let Mat2×1 be its subset consisting of matrices of the

form
(

a 0
b 0

)
which are identified naturally with columns

(
a
b

)
. Abusing a little

we shall not distinguish between
(

a 0
b 0

)
and

(
a
b

)
.

We will consider the following matrix operator

N :=
(

σ −D
D −iωµ

)

on the set C1(Ω, Mat2×2(H(C))), Mat2×2(H(C)) being the set of 2 × 2 matrices with
entries from H(C). Hence for us

N : C1(Ω, Mat2×2(H(C))) → C0(Ω, Mat2×2(H(C))).

Its restriction Ñ := N|C1(Ω, Mat2×1(C3)) onto, in fact, pairs of C3-valued functions has
the form

Ñ =
(

σ div − rot
−div + rot −iωµ

)

and hence does not coincide with M (moreover, Ñ maps such pairs onto pairs of
H(C)-valued functions). Set

A1 :=
(

α −σ
−α −σ

)
, B1 :=

1
2

(
σ−1 −σ−1

α−1 α−1

)
,

then

A1 ∗ N ∗ B1 =
(

Dα 0
0 Dα

)
,

where “∗” stand for usual matrix multiplication.
Analogously for

A2 :=
(

−α −σ
α −σ

)
, B2 :=

1
2

(
−σ−1 σ−1

α−1 α−1

)

one has

A2 ∗ N ∗ B2 =
(

Dα 0
0 Dα

)
,

(all the matrices A1, B1, A2, B2 are invertible).
Thus there exist invertible matrices A1, B1, A2, B2 such that:

N = A−1
1 ∗

(
Dα 0
0 Dα

)
∗ B−1

1 , and N = A−1
2 ∗

(
Dα 0
0 Dα

)
∗ B−1

2 .

This means, in particular, that

kerN ≈ kerDα × kerDα.
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The “quaternionic Cauchy-Maxwell kernel”, i.e., the fundamental solution of N , is
given by

KN ,α(x) :=
1
2

(
σ−1 σ−1

α−1 −α−1

)
∗

(
αKα(x) −σKα(x)
αKα(x) σKα(x)

)
,

where Kα is the Cauchy kernel for Dα.
The integral

KN ,α[f ](x) := −
∫

Γ

KN ,α(x − τ ) ∗ σ̃τ ∗ f(τ ), x ∈ Ω±,

plays the role of the Cauchy-type integral, the one with the quaternionic Cauchy-

Maxwell kernel (see [3], [8]); with f : Γ → Mat2×2(H(C)) and σ̃τ :=
(

0 στ

στ 0

)
. We

shall call also KN ,α[f ] the quaternionic Cauchy-Maxwell-type integral.
THEOREM 5.1 (Poincaré-Bertrand formula for the quaternionic Cauchy-Maxwell

integral on a piece-wise Liapunov surface). Let Γ be a piece-wise Liapunov surface in
R3. Let f ∈ Hµ(Γ × Γ; Mat2×2(H(C))), 0 < µ < 1, then the following formulas hold
everywhere on Γ:

∫

Γτ1

∫

Γτ

KN ,α(t − τ ) ∗ σ̃τ ∗ KN ,α(τ − τ1) ∗ σ̃τ1 ∗ f(τ, τ1) + γ2(t)f(t, t)

=
∫

Γτ

∫

Γτ1

KN ,α(t − τ ) ∗ σ̃τ ∗ KN ,α(τ − τ1) ∗ σ̃τ1 ∗ f(τ, τ1). (6)

PROOF. Let f ∈ Hµ(Γ × Γ; Mat2×2(H(C))), consider KN ,α. Hence using formula
(5) and after not complicated computation we obtain (6).

6 Proof of Theorem 2.1

In this Section we use results from Section 4. For the reader’s convenience, recall some
information from [8]: for ~f ∈ Mat2×1(C3)

KN ,α(ξ − ζ) ∗ σ̃ζ ∗ ~f (ζ) =
(
〈Uα(ξ − ζ), ~f (ζ)〉Mat + KM(ξ, ζ) ? ~f (ζ)

)
ds(ζ),

where 〈·, ·〉Mat is defined (see [8, Section 4]). The proof of Theorem 2.1 follows from
Theorem 5.1 taking into account the above relation between the class of the time-
harmonic electromagnetic fields and α-hyperholomorphic functions.

References
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