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Abstract

A symbolic computational algorithm which detects “linear” solutions of non-
linear polynomial differential equations of single functions, is developed in this
paper.

1 Introduction

The problem of obtaining general solutions of differential equations via symbolic al-
gorithms has been studied in the past by many authors (see e.g. [2],[4],[5],[6],[7],[8]).
These algorithms allowed new calculation techniques to be accomplished, much more
efficiently, faster and without approximation errors. In this paper we treat with differ-
ential equations of the form:

p(x, y(x), y′(x), y′′(x), . . . , y(n)(x)) = 0 (1)

where p is a polynomial function and y(x) a complex function of a single variable. Our
aim is to discover possible “linear” solutions of (1). By the term “linear” we mean
solutions which can be obtained by solving linear differential equations of the form
α−1(x) + α0(x)y(x) + α1(x)y′(x) + · · ·+ αn(x)y(n)(x), where αi(x), i = −1, . . . , n, are
polynomials of the single variable x. Sometimes, the solutions of those linear differential
equations are called holonomic. Our approach is focused on the construction of an
algorithm which faces the problem symbolically. What this algorithm is essentially
doing is that helps us to rewrite p as follows:

p = c1L
j0,1
0,0 [L(1)

1,1]
j1,1 · · · [L(n−k)

1,n−k]jn−k,1 + · · ·+ cνL
j0,ν

0,0 [L(1)
ν,1]

j1,ν · · · [L(n−k)
ν,n−k]

jn−k,ν + R

where La,b, (L0,0 is a common factor), are differential polynomials of the form:

La,b =
A0,a,b(x)
A−1,a,b(x)

+
A1,a,b(x)
A−1,a,b(x)

y(x) +
A2,a,b(x)
A−1,a,b(x)

y′(x) + · · ·+ y(k)(x)
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and Aλ,a,b are complex polynomials of a single variable x, of the form: Aλ,a,b =∑r
ι=0 Wι,λ,a,bx

ι, r ≥ 0. The quantities k and r are predetermined, n is the order
of p, and ja,b are specific positive whole numbers. The quantities Wι,λ,σ,ϕ are undeter-
mined parameters which can take certain values, cj are the coefficients, depending from
the parameters Wι,λ,σ,ϕ and R a rational function of the variables x, y, y′, . . . , y(k−1)

and the parameters Wι,λ,σ,ϕ, called the remainder. Afterward, we seek for those val-
ues of the parameters which eliminate the remainder. If this is possible, then the

linear differential polynomial L0,0 =
A0,0,0(x)
A−1,0,0(x)

+
A1,0,0(x)
A−1,0,0(x)

y(x) + · · ·+ y(k)(x), with

W0,0,0,0, W1,0,0,0, . . . , Wρ,−1,0,0 evaluated over those values which annihilates the re-
mainder, is a factor of p, (where the operation of differentiation has been taken under
consideration). Since A−1,0,0(x) is a common denominator, the above fact means that
any solution of A0,0,0(x) + A1,0,0(x)y(x) + · · ·+ A−1,0,0(x)y(k) = 0 is a solution of the
equation (1), too. Since we do it for every k = 0, . . . , n, and several values of r, we col-
lect likewise, all the ” linear ” solutions of the equation p = 0. In the case where r = 0,
the method will provide us with trivial linear solutions, these are solutions obtained
by a linear differential equation with constant coefficients.

Our method is an extension of a similar procedure, introduced by the author and
applied in the study of difference equations and feedback design [1],[9]. Its main merit is
its computational orientation. It turns to be a useful tool, implemented on a computer
machine and gives useful results. Moreover, despite our method resembles with the
approach of differential algebra, [5], there are some differences. Concretely, (i) We are
working with a single differential polynomial whilst Ritt’s algorithm deals with sets
of differential polynomials. (ii) The existence of the parameters Wι,λ,σ,ϕ permits us
to find classes of linear solutions. We can then select among them, these particular
solutions which satisfy additional conditions. For instance, we can search for those
values of Wι,λ,σ,ϕ, if any, which do not only eliminate the remainder but also yield
stable linear factors. (iii) In the classical Ritt’s approach we find the minimum number
of differential polynomials which generate a differential ideal. In our method we check
if a given polynomial belongs to a differential ideal, produced by linear differential
polynomials. Throughout the text, C, R and Z+ will denote the sets of complex
numbers, real numbers and positive integers, respectively.

2 The Algebraic Framework

Let C[x] be the ring of polynomials of a single variable with complex coefficients. This
polynomial ring is a differential ring too, with the usual derivation [2],[5]. Let y(x) be
a complex function and y(i)(x), i = 0, 1, 2, . . . its derivatives. A differential polynomial
p, in y(x) or shortly in y, is a polynomial in y and its derivatives with coefficients in
C[x]. p can be written as follows:

p =
ϕ∑

λ=1

sλxaλ

n∏

i=0

[y(i)(x)]θi,λ

where sλ ∈ C and some of the exponents aλ, θi,λ ∈ Z+ are not equal to zero. The
number n, which represents the highest order derivative of y(x), is called the order of
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p. An equation of the form p = 0, with y(x) as unknown function, is called a polynomial
differential equation. Any function which satisfies it, is called a solution or a general
solution. An expression of the form: L =

∑n
i=0 ai(x)y(i)(x), ai(x) ∈ C[x], is called a

linear differential polynomial and the equation L = 0 a linear differential equation. Its
solutions are called “linear” or holonomic solutions of order n.

Let p1 = s1x
a1

∏n
i=0[y

(i)(x)]θi,1, p2 = s2x
a2

∏n
i=0[y

(i)(x)]θi,2 be two, not identical,
terms of p. This means that there is at least one index k, 1 ≤ k ≤ n, such that
θk,1 6= θk,2 or θi,1 = θi,2, i = 0, 1, . . .n and a1 6= a2. We say that the term p2 is ordered
higher than p1 with respect to lexicographical order and we write p1 ≺ p2, if either
there is an index s such that θs,1 < θs,2 and θj,1 = θj,2, j = s + 1, . . . , n or θi,1 = θi,2,
i = 0, 1, . . ., n and a1 < a2. By means of this rank we can order all the terms of p in
an ascending way. The term which is ordered higher, is called the maximum term of p.
The i-derivative of a polynomial p is denoted by p(i). The differential ideal, generated
by a finite set of differential polynomials: Φ = {Φ1, Φ2, . . . , Φm} and denoted by [Φ]
is a set which consists of all differential polynomials that can be formed of elements in
Φ by multiplication with arbitrary polynomials, addition and differentiation.

Let W = {Wι,λ,σ,ϕ} be a set of undetermined parameters, taking values in C. A
Formal-(k,r)-Factorization of p, denoted by Formal(p, k, r), is an expression of p of
the form:

Formal(p, k, r) =
ν∑

µ=1

cµ

n−k∏

i=0

[(
A0,k+i,µ(x)
A−1,k+i,µ(x)

+
A1,k+i,µ(x)
A−1,k+i,µ(x)

y(x)

+
A2,k+i,µ(x)
A−1,k+i,µ(x)

y′(x) + · · ·+ y(k)(x)
)(i)

]ji,µ

+ R (2)

where the quantities Aλ,k+i,µ(x), λ = −1, . . . , k are r-degree polynomials of the single
variable x and parametrical coefficients, that is: Aλ,k+i,µ(x) =

∑r
ι=0 Wι,λ,k+i,µxι, the

coefficients cµ and the remainder R are rational functions of the terms x, y′(x),. . .,
y(k−1)(x), Wι,λ,k+i,µ only. Some of the exponents ji,µ ∈ Z+ may be equal to zero.

Sometimes, (2) is written briefly as Formal(p, k, r) =
ν∑

µ=1

cµ

n−k∏

i=0

[L(i)
i,µ]ji,µ + R, where

we used the notation Li,µ for the linear differential polynomial.
We can take different expressions of the Formal(p, k, r) of a concrete differential

polynomial p, by giving to the parameters Wι,λ,σ,µ certain values. Such procedures are
called evaluations of the Formal(p, k, r). A most rigorous approach is the following:
Let W = {Wι,λ,σ,µ} be the set of the variables, appeared in the Formal - (k,r) - Fac-
torization of a given polynomial p. By arranging the parameters in an increasing order
we form the vector W = (Wιh ,λh,σh ,µh)h=1,2,...,n. Let s = (ah)h=1,2,...,n be a vector
of complex numbers, which has the same length with the vector W. We say that the
parameters W follow the rule s and we write W → s if the following substitutions are
valid: Wιh,λh,σh,µh = ah, h = 1, 2, . . ., n. Let M a set of rules, M = {s1, s2, . . . , sω, . . .}
then Formal(p, k, r)

∣∣
M

is the set: { Formal(p, k, r)
∣∣
s1

, Formal(p, k, r)
∣∣
s2

, . . .,
Formal(p, k, r)

∣∣
sω

, . . .}. The set of substitutions M , may be finite or infinite. When
we evaluate Formal(p, k, r) over M , the linear differential polynomials Li,µ and the
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remainder R take specific values, these are denoted by Li,µ

∣∣
M

and R
∣∣
M

. A case
of particular interest is when we can find values of the parameters which eliminate the
remainder R. Whenever this happens, p is a “combination” of linear differential poly-
nomials or, in a more formal language, p is a member of the differential ideal produced
by these linear differential polynomials. Relevant is the following theorem:

THEOREM 1. Let p be a differential polynomial of order n, let k be given and

Formal(p, k, r) =
ν∑

µ=1

cµ

n−k∏

i=0

[L(i)
i,µ]ji,µ+R its Formal-(k,r)-Factorization. Let us suppose

that there is a set of rules, denoted by R, which eliminates the remainder R, i.e.
R

∣∣
R = 0, then p ∈ [ Li,µ

∣∣
R ,i = 0, . . . , n− k, µ = 1, . . . , ν].

PROOF. The proof comes straightforward from the definition of the Formal-(k,r)-
Factorization.

It is obvious that if the linear differential equations Li,µ

∣∣
R = 0 have a common

solution, this is a solution of the nonlinear equation p = 0, too. This is the cornerstone
of our approach.

EXAMPLE 1. Let us consider the differential polynomial p = 7xy′′ + 8yy′. We
want to calculate the quantity Formal(p, 1, 1). Since in this case k = 1 and r = 1,
we shall form linear differential polynomials up to the first order and the polynomials
Aλ,i,j will be of degree one. Explicitly we have:

Formal(p, 1, 1) = 7x∗
(

W0,0,2,1 + W1,0,2,1x

W0,−1,2,1 + W1,−1,2,1x
+

W0,1,2,1 + W1,1,2,1x

W0,−1,2,1 + W1,−1,2.1x
y(x) + y′(x)

)′

+
(
−7x(W0,1,2,1 + W1,1,2,1x)

W0,−1,2,1 + W1,−1,2,1x
+ 8y(x)

)
·
(

W0,0,1,2 + W1,0,1,2x

W0,−1,2,1 + W1,−1,2,1x
+

+
W0,1,1,2 + W1,1,1,2x

W0,−1,2,1 + W1,−1,2,1x
y(x) + y′(x)

)
+ R

The remainder R is of the form R = Φ0 + Φ1y + Φ2y
2, where Φ0, Φ1, Φ2 are rational

functions of the variable x and the Wι,λ,σ,µ parameters (not included because of their
large size). The following rules eliminate the remainder: s1 = {W0,1,2,1 = s, W1,−1,2,1 =
ω, W0,−1,2,1 = ϕ, W1,0,2,1 = k, W1,1,2,1 = sω

ϕ
, the other W -parameters = 0} and s2 =

{W0,1,2,1 = s, W0,0,1,2 = ω, W1,−1,2,1 = ϕ, W1,0,2,1 = k, W0,0,2,1 = −7s2

8ϕ , W1,−1,1,2 =
8ωϕ
7s , the other W -parameters = 0}, with ω, ϕ, s, k ∈ C. Indeed, for instance

Formal(p, 1, 1)
∣∣
r2

= 7x

(
−7s2 + 8xϕk

8xϕ2
+

s

xϕ
y + y′

)′

+
(
−7s

ϕ
+ 8y

) (
7s

8xϕ
+ y′

)

and the differential ideal which contains p, is
[(

−7s2+8xϕk
8xϕ2 + s

xϕy + y′
)

,
(

7s
8xϕ + y′

)]

where ϕ, s, k,∈ C. By setting ϕ = s = 1 and k = 0, we take the simplified ideal[−7
8x + 1

xy + y′, 7
8x + y′

]
.
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3 Detection of the Linear Solutions

The scope of this section is to present the algorithm which constructs for given k and
r, special Formal(p, k, r) with a linear differential polynomial as a common factor to
each term. We denote this common factor by Lc,k. Afterward, by finding proper sets
of values for the parameters Wι,λ,σ,ϕ, we eliminate the remainder. It is then clear
that any solution of the linear equation Lc,k = 0, where the polynomial Lc,k has been
evaluated over this set, is a solution of the original system, too. By repeating the whole
procedure for every k = 0, . . . , n and various values of r, we discover linear solutions.
As we pointed out, the crucial issue is how can we eliminate the remainder. This is
carried out by solving a system of algebraic equations. Finally, we have to elucidate
that in this paper we do not take into account initial conditions. We are only focused
on how we obtain general solutions, that is solutions which “contain” constants. We
present now the algorithm upon discussion. Let us suppose that an algorithm which
solves an algebraic system of polynomial equations, is available. These algorithms are
classical in computational algebra and there are many of them in the literature [3]. We
name such an algorithm as SysAlgEqs.

THE DIF-FORMAL ALGORITHM

Input:

• A differential polynomial p of order n.

• The upper bound of the degree r, of the polynomial coefficients . We denote it by ρ.

Output: The quantities Sk,r , k = 0, . . . , n, r = 0, . . . , ρ

FOR k = 0 TO n

FOR r = 0 TO ρ

Step 1: R = p, µ = 0.

Step 2: REPEAT the following steps UNTIL R does not contain terms of order ≥ k.

Step 2a: Set µ = µ + 1,

Step 2b: Find the maximum term of R, with respect to the lexicographical order.
We denote it by

pµ = sµ · xaµ ·
n∏

i=0

[y(i)(x)]λi,µ

where aµ, λi,µ are positive integers and y(i)(x) the derivatives of y(x) of order

i. At the first iteration sµ is a constant, then it becomes a function of the free

parameters Wι,λ,σ,ϕ and x, as well.

Step 2c: Construct the linear formal differential polynomials:

Lc,k =
A0,k(x)

A−1,k(x)
+

k−1∑

j=0

Aj+1,k(x)

A−1,k(x)
y(j) + y(k)
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Li,k =
A0,k+i,µ(x)

A−1,k+i,µ(x)
+

k−1∑

j=0

Aj+1,k+i,µ(x)

A−1,k+i,µ(x)
y(j) + y(k), i = 1, . . . , n − k

with Aλ,k =
∑r

ι=0 Wι,λ,kxι, Aλ,k+i,µ =
∑r

ι=0 Wι,λ,k+i,µxι and λ = −1, . . . , k.

Step 2d: Execute the operation:

R = R − sµ · xaµ ·
k−1∏

i=0

[y(i)(x)]λi,µ · [L(0)
c,k]λk,µ ·

n−k∏

i=1

[L
(i)
i,k]λi,µ

END of REPEAT

Step 3: By means of the SysAlgEqs-Algorithm we find the set Sk,r of those values of the

parameters, Wι,λ,σ,ϕ , which eliminate the remainder. In other words: R
∣∣
Sk,r

= 0.

END of FOR r

END of FOR k

It is obvious that the DIF-FORMAL algorithm terminates after a finite number of
iterations.

THEOREM 2. Let Sk,r, be the outputs of the DIF-FORMAL Algorithm and I ⊂
{0, 1, . . . , n}, J ⊂ {0, 1, . . . , ρ} subsets of indexes such that Sk,r 6= ∅ for k ∈ I, r ∈ J ,
then the solutions of the linear differential equations Lc,k

∣∣
Sk,r

= 0, k ∈ I, r ∈ J , are
solutions of the nonlinear polynomial differential equation p = 0, too.

PROOF. Let p a differential polynomial and k, r fixed. By substituting backwards
the successive results of the step 2d we find that

p =
m∑

µ=1

sµxaµ

k−1∏

i=0

[y(i)]λi,µ · [L(0)
c,k]λi,µ ·

n−k∏

i=1

[L(i)
i,k]λi,µ + R (3)

This is a special Formal-(k,r)-Factorization of p with cµ = sµxaµ
∏k−1

i=0 [y(i)]λi,µ and
Lc,k, as a common factor in all the terms but the remainder. We denote this Formal
Factorization by CFormal(p, k). Let us now suppose that there are subsets of indexes
I, J , such that Sk,r 6= ∅, k ∈ I, r ∈ J . This means that R

∣∣
Sk,r

= 0 and thus, the
linear differential polynomial Lc,k, evaluated over Sk,r, is a common factor of every term
of p = CFormal(p, k)

∣∣
Sk,r

. This implies that any solution of the linear differential

equation Lc,k

∣∣
Sk,r

= 0 is also a solution of the nonlinear equation p = 0. Since this
argument is true for any k, r, the theorem has been proved.

The above result can be restated, using ideals, in the following way.

COROLLARY 1. Let Sk,r, be the outputs of the DIF-FORMAL Algorithm and
I ⊂ {0, 1, . . . , n}, J ⊂ {0, 1, . . ., ρ} subsets of indexes such that Sk,r 6= ∅ for k ∈ I, r ∈
J , then p ∈ [ Lc,k

∣∣
Sk

], k ∈ I, r ∈ J .
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In order to eliminate the remainder we have to solve a system of algebraic polyno-
mial equations. This can be done via several methods. Groebner basis, [3], is a popular
powerful tool, with satisfactory results.

REMARK 1. Generally speaking, the upper bound of the degree of the polyno-
mial coefficients, ρ, may be chosen freely. Nevertheless, is meaningless to be arbitrary
large, since this fact will create a lot of unnecessary terms, which will be eliminated
immediately by putting their coefficients equal to zero. Therefore, an interesting ques-
tion is if we can estimate a proper value for ρ, (a lower upper bound), which will
minimize the number of terms to be left over. To give a first answer to this com-
plex problem, we work as follows: Let p be a differential polynomial, k fixed and
Formal(p, k, r) as in (3) with R = 0, (The DIF-Algorithm has been applied at p). By
deg(tµ, x, k, r) we denote the degree of x at the µ-term of the Formal(p, k, r). Since
the degree of x at L

(i)
i,µ is 2ri, i 6= 0, (this is due to the differentiation rules), we get

deg(tµ, x, k, r) = aµ + rλ0,µ +
∑n−k

i=1 2riλi,µ. After some manipulations, we can see
that the minimization of the number of the redundant terms is accomplished if the
next relation holds:

ρ = min
r∈Z+

{min
µ,ν

| deg(tµ, x, k, r)− deg(tν , x, k, r)|}=

= min
r∈Z+

{
min
µ,ν

∣∣∣∣∣(aµ − aν) + r

[
(λ0,µ − λ0,ν) + 2

n−k∑

i=1

i(λi,µ − λi,ν)

]∣∣∣∣∣

}

Actually, we ask the differences among the various values of the degree of x to be as
small as possible, so that, we achieve the number of the unused x or xy or xy′ . . .
terms to be small. This problem can be faced via various optimization techniques and
can provide us a satisfactory value for the lowest upper bound of the degree of the
polynomial coefficients.

EXAMPLE 2. Let us consider the differential equation xyy′′ − x(y′)2 − yy′ = 0 or
p = 0. By means of classical techniques we can find a solution of the form y = aebx2

,
a, b constants. Now, to clarify our ideas and to indicate how the algorithm works in
practice, we shall present the case k = 1, r = 1 in details. These equalities mean two
things, first that we are going to detect linear polynomials of first order, included into
the original equation, and second the polynomial coefficients will be of degree one. In
other words the common linear differential polynomial will be:

Lc,2 =
W0,0,1 + W1,0,1x

W0,−1,1 + W1,−1,1x
+

W0,1,1 + W1,1,1x

W0,−1,1 + W1,−1,1x
y + y′

The order of p is n = 2 and its maximum term xyy′′. At the first iteration we execute
the subtraction: p1 = p − xy · L′

c,2. This operation will eliminate the y′′ term. In the
next iteration −x(y′)2 is the maximum term and we calculate p2 = p1 + x · (Lc,2)2.
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Working this way we finally get:

Formal(p, 1, 1)

= xy

(
W0,0,1 + W1,0,1x

W0,−1,1 + W1,−1,1x
+

W0,1,1 + W1,1,1x

W0,−1,1 + W1,−1,1x
y + y′

)′

−x

(
W0,0,1 + W1,0,1x

W0,−1,1 + W1,−1,1x
+

W0,1,1 + W1,1,1x

W0,−1,1 + W1,−1,1x
y + y′

)2

+
(

2x(W0,0,1 + W1,0,1x) − W0,−1,1y + x(W0,1,1 − W1,−1,1 + W1,1,1x)y
W0,−1,1 + W1,−1,1x

)

+
(

W0,0,1 + W1,0,1x

W0,−1,1 + W1,−1,1x
+

W0,1,1 + W1,1,1x

W0,−1,1 + W1,−1,1x
y + y′

)
+ R

The rules s1 = (W1,1,1 = h, W0,−1,1 = l, the other W -parameters = 0) h, l arbitrary
constants, and s2 = ( all the W -parameters = 0), eliminate the remainder. By substi-
tuting them to Lc,2 we get the linear differential equations xhy − ly′ = 0, y′ = 0. The
general solutions of those equations will be solutions of the original nonlinear differen-
tial equation too. Therefore y(x) = ce−x2h/2l, y(x) = c are solutions of the equation
p = 0, too. Working similarly, we obtain for k = 0,k = 1, k = 2 and r = 0, r = 1, r = 2,
(we used the method of Remark 1), analogous results. What we have actually proved
is that p is a member of the differential ideal [xhy − ly′, y′].

EXAMPLE 3. We consider the differential equation: (x2 − x)y′ + xy′′ − x2y′′′ +
(−2x3 − 3x2 + 3x) = 0. We investigated it by giving to the order k and to the degree
r several values. Actually, we set k = 0, 1, 2 and r = 0, 1, 2, 3. The DIF-FORMAL
Algorithm gave the following solutions: y = 5x2 + x + c, y = 5x2 + x + c + c1e

x,
y = 5x2 + x + c− 3e−xc1 − 2e−xxc1, y = 5x2 + x + c + c1e

x − 1
4e−x(3 + 2x)c2, c, c1, c2

constants.
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