
Applied Mathematics E-Notes, 7(2007), 53-59 c© ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

Generating Valid 4 × 4 Correlation Matrices∗

Mark Budden†‡ , Paul Hadavas†, Lorrie Hoffman†, Chris Pretz§

Received 10 March 2006

Abstract

In this article, we provide an algorithm for generating valid 4 × 4 correlation
matrices by creating bounds for the remaining three correlations that insure pos-
itive semidefiniteness once correlations between one variable and the other three
are supplied. This is achieved by attending to the constraints placed on the lead-
ing principal minor determinants. Prior work in this area is restricted to 3 × 3
matrices or provides a means to investigate whether a 4 × 4 matrix is valid but
does not offer a method of construction. We do offer such a method and supply
a computer program to deliver a 4 × 4 positive semidefinite correlation matrix.

1 Introduction

The level of sophistication and complexity of statistical inquiry has placed demands
on researchers to increasingly employ simulation techniques. Frequently, distributions
that reflect the essence of an application are assumed to be multivariate normal with
a general prior knowledge of the correlation structure. More theoretical investigations
such as those in the area of Bayesian analysis rely on Markov Chain Monte Carlo meth-
ods to investigate posterior distributions. Liechty, Liechty and Muller [4] encounter a
challenge when conducting their simulations due to the ‘awkward manner in which rij

is embedded in the likelihood’ (p. 6) noting that the requirement of positive semidefi-
niteness is the constraint that imposes an analysis dealing with truncated distributions.
This leads them to develop a procedure that generates normalizing constants. This pos-
itive semidefinite matrix complication is encountered throughout the applied literature
and sometimes leads to erroneous outcomes when simulation results are aggregated
while using an invalid correlation matrix.

The need to forecast demand for a group of products in order to realize savings
by properly managing inventories is one such application requiring use of correlation
matrices. Xu and Evers [10] offer a proof that partial pooling of customers can not
lead to fewer resource requirements than complete pooling as was indicated in Tyagi
and Das [9]. They further elucidate their position by showing that the error in the ex-
amples offered by these authors centered on the use of infeasible correlation matrices.
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54 Generating Correlation Matrices

Xu and Evers reveal that the matrices are not positive semidefinite and do so in the
three variable case by revisiting boundary conditions offered by Marsaglia and Olkin
[5] and via a computer program they developed to produce eigenvalues for the four
variable case. Xu and Evers indicate that such an oversight is understandable because
of the complex nature and interrelationships inherent in correlation structures partic-
ularly for ‘non-statisticians like us ([10], p. 301)’. We contend that even statisticians
and mathematicians find the problem of developing feasible correlation matrices to be
challenging.

The work done by Xu and Evers is helpful in that it prevents a researcher from
offering an infeasible example or conducting a meaningless simulation due to non-
positive semidefinite correlation matrices. Their approach, though, is not constructive,
as they say ‘a correlation matrix is checked, (but) the determination of boundaries
necessary for constructing feasible matrices is not performed ([10], p. 305)’. We offer
such a method in the four variable case.

The paper proceeds as follows. In the next section, previous results for 3 × 3
correlation matrices are explained. The generation of valid 4×4 correlation matrices is
detailed in section 3. Finally, in section 4, we illustrate the utility of this constructive
approach with an example from Xu and Evers [10]. Additionally, in section 4, other
examples of valid 4 × 4 correlation matrices are provided along with directions for
further research.

The authors would like to thank Mortaza Jamshidian and Peter Rousseeuw for
reading a preliminary draft of this paper and providing several helpful comments.

2 Review of 3 × 3 correlation matrices

The method described in this section for generating 3 × 3 correlation matrices has
been noted by many sources. Although the bounds described here were known earlier,
Stanley and Wang [8] gave the first proof of the bounds in 1969. Other (geometric)
proofs were subsequently given by Glass and Collins [1] and Leung and Lam [3]. Olkin
[6] investigated the general question of how correlations are restricted when a submatrix
of a correlation matrix is fixed. More recently, Rousseeuw and Molenberghs [7] used
these bounds to investigate the shape and the volume of the set of valid 3×3 correlation
matrices.

Let x1, x2, and x3 be random variables and let rij denote the correlation coefficient
for the variables xi and xj where i, j ∈ {1, 2, 3}. A 3×3 correlation matrix is a positive
semidefinite matrix of the form

A =




1 r12 r13

r12 1 r23

r13 r23 1


 .

To produce a valid correlation matrix, we begin by randomly picking the correlation
coefficients −1 < r12 < 1 and −1 < r13 < 1. Here, and throughout the entire paper, we
exclude the possibilities of having correlations of ±1 since such correlations indicate the
redundancy of one variable where it is a perfect linear combination of another and can
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thus be eliminated from any analysis. Once these coefficients are selected, the possible
range of values for r23 can be described by considering the determinant

detA = −r2
23 + (2r12r13)r23 + (1 − r2

12 − r2
13) ≥ 0.

This determinant is equal to 0 when

r23 = r12r13 ±
√

(1 − r2
12)(1 − r2

13)

and it obtains its maximum value (for r12 and r13 fixed) of

(1 − r2
12)(1 − r2

13) ≤ 1

when r23 = r12r13. Thus, A is a correlation matrix exactly when r23 satisfies

r12r13 −
√

(1 − r2
12)(1 − r2

13) ≤ r23 ≤ r12r13 +
√

(1 − r2
12)(1 − r2

13). (1)

Again, we do not allow r23 = ±1 for the reason described above.
A special case to notice is when r12r13 = 0. Without loss of generality, assume that

r12 = 0. The range of possible values of r23 is given by

−
√

1 − r2
13 ≤ r23 ≤

√
1 − r2

13.

From this one sees that if r12 = 0 = r13, then r23 can take on any possible correlation.

3 Algorithmic Generation of 4 × 4 Correlation Ma-
trices

We now consider a 4 × 4 matrix of the form

A =




1 r12 r13 r14

r12 1 r23 r24

r13 r23 1 r34

r14 r24 r34 1


 .

The correlations r12, r13, and r14 can be randomly picked from the interval (−1, 1). To
find suitable ranges for the other correlations, we use the fact that a symmetric matrix
is positive semidefinite if and only if all of its symmetric submatrices (including itself)
have a nonnegative determinant (see. [2]). In other words, A is a correlation matrix if
and only if detA ≥ 0 and every matrix of the form

Aijk =




1 rij rik

rij 1 rjk

rik rjk 1




is a correlation matrix for i, j, k ∈ {1, 2, 3, 4} (no two of i, j, and k are equal).
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For each remaining correlation rjk ∈ {r23, r24, r34}, there are three limitations on
the range of possible values. With the symmetry of the matrix, we use the fact that
rij = rji for all i, j to simplify the notation used in the bounds for r23, r24, r34. First,
the bounds are restricted by det(A1jk) ≥ 0. From the previous section, we see that

L
(1)
jk ≤ rjk ≤ U

(1)
jk ,

where

L
(1)
jk := r1jr1k −

√
(1 − r2

1j)(1 − r2
1k) and U

(1)
jk := r1jr1k +

√
(1 − r2

1j)(1 − r2
1k).

Next, we consider the restrictions imposed on the range of rjk by considering det(Aijk) ≥
0. Again, from the previous section, we have

L
(2)
jk ≤ rjk ≤ U

(2)
jk ,

where

L
(2)
jk := rijrik −

√
(1 − r2

ij)(1 − r2
ik) and U

(2)
jk := rijrik +

√
(1 − r2

ij)(1 − r2
ik).

Finally, we look at the restrictions imposed by det(A) ≥ 0. Noting that

detA = 1 − r2
12 − r2

13 − r2
14 − r2

23 − r2
24 − r2

34 + r2
12r

2
34 + r2

13r
2
24 + r2

14r
2
23

+ 2r23r24r34 + 2r12r13r23 + 2r12r14r24 + 2r13r14r34

− 2r12r14r23r34 − 2r13r14r23r24 − 2r12r13r24r34,

can be factored as a quadratic with respect to each rjk ∈ {r23, r24, r34}, we find the
bounds

L
(3)
jk ≤ rjk ≤ U

(3)
jk ,

where

L
(3)
jk :=

rjirki + r1jr1k − r1jr1irki − r1kr1irji −
√

det(A1ji) · det(A1ki)
1 − r2

1i

and

U
(3)
jk :=

rjirki + r1jr1k − r1jr1irki − r1kr1irji +
√

det(A1ji) · det(A1ki)
1 − r2

1i

Now we describe the algorithm using the bounds from above. Once r12, r13, and
r14 are fixed, we choose r23 from the range

max{L(1)
23 , L

(2)
23 , L

(3)
23 } ≤ r23 ≤ min{U (1)

23 , U
(2)
23 , U

(3)
23 },

where L
(2)
23 and L

(3)
23 are minimized and U

(2)
23 and U

(3)
23 are maximized over the regions

L
(1)
24 ≤ r24 ≤ U

(1)
24 and L

(1)
34 ≤ r34 ≤ U

(1)
34 .
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This guarantees the existence of some valid correlation matrix with the chosen values
r12, r13, r14, and r23 since all of the conditions of positive semidefinite are met.

A similar process is repeated for r24. We choose r24 from the range

max{L(1)
24 , L

(2)
24 , L

(3)
24 } ≤ r24 ≤ min{U (1)

24 , U
(2)
24 , U

(3)
24 },

where L
(2)
24 and L

(3)
24 are minimized and U

(2)
24 and U

(3)
24 are maximized over the region

L
(1)
34 ≤ r34 ≤ U

(1)
34 .

Finally, there is only one correlation left to bound. We choose r34 from the range

max{L(1)
34 , L

(2)
34 , L

(3)
34 } ≤ r34 ≤ min{U (1)

34 , U
(2)
34 , U

(3)
34 }.

The constructive approach of this algorithm guarantees that any matrix formed in this
way will be a valid correlation matrix. Furthermore, the ranges of possible values of
each of the correlations r23, r24, and r34, are the largest possible ranges so that there
will exist some valid correlation matrix with any chosen value. In other words, any
value chosen outside of the determined range will fail one of the necessary conditions
for being valid. Thus, our algorithm provides both necessary and sufficient conditions
for producing valid 4 × 4 correlation matrices.

4 Applications

Having a method to create valid correlation matrices, we can now discuss the appli-
cation presented by the resource allocation problem and present other examples that
illustrate the difficulty of being able to guess proper correlation values. In offering a
proof related to resource allocation, Xu and Evers [10] refute a prior claim by Tyagi
and Das [9]. Xu and Evers explain that the error in logic was fostered by errors in the
examples that inadvertently used invalid correlation matrices - ones that failed to be
positive semidefinite. In the three variable case, Xu and Evers rely on boundary con-
ditions offered by Marsaglia and Olkin [5] to establish that the matrix used by Tyagi
and Das was not positive semidefinite. In the four variable case, they employ their own
computer program developed to produce eigenvalues.

The previous section contains a constructive algorithm that generates valid 4 × 4
correlation matrices. We have developed a computer program called “validcor” (2005)
to accomplish this task. Our program delivers the remaining correlations after speci-
fying those relating one variable to the other three. The program can be found in the
general archive at Carnegie Mellon University’s Statlab.

http://lib.stat.cmu.edu
To illustrate the utility of this constructive approach we use Tyagi and Das’ matrix




1 −.5 .5 −.5
−.5 1 −.5 .5

.5 −.5 1 .5
−.5 .5 .5 1



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and show that it would not be generated by our program. For this example we set
r12 = −.5 , r13 = .5, and r14 = −.5. Feasible bounds found by our program for r23

are (−1, .5]. We chose r23 = −.5. Then, feasible bounds found for r24 are [−.5, 1). We
chose r24 = .5. Finally, feasible bounds found for r34 are (−1, .3333]. The r34 value
selected for the Tyagi and Das matrix was .5 and is outside the range that assures a
positive semidefinite matrix.

In addition to the use of the program showing how certain matrices are not valid
correlation matrices, we provide the table below where each of the five rows correspond
to generations of valid correlation matrices. The first three columns give the input
parameters.The following columns give the bounds for the remaining correlations and
the choices for r23 and r24 that led to the successive feasible bounds found by the
computer program. Here, r∗23 and r∗24 represent those choices, respectively. No choice
for r34 is given as any value within the bounds will complete a valid matrix.

Table 1: Examples of Valid Correlation Matrix Generations

r12 r13 r14 r23 bounds r∗23 r24 bounds r∗24 r34 bounds

.777 .39 .472 (−.2766, .8827) .88 (−.1852, .9217) .92 (.9835, .9957)

.981 .397 .961 (.2114, .5675) .567 (.8895, .9964) .996 (.6304, .6351)

.027 .495 .986 (−.8552, .8819) .881 (−.1381, .1933) −.138 (.3441, .3462)

.801 .913 −.6 (.4871, .9755) .975 (−.9553,−.0017) −.002 (−.2232,−.2216)

.04 .008 .207 (−.9988, .9995) .754 (−.9692, .9858) −.96 (−.8716, .641)

One interesting outcome to note from the table are the final bounds for the r34 value.
When both selections for r23 and r24 occur near their respective bounds, the interval for
r34 is severely limited. However, in the last example, a selection of r23 not close to either
bound allows r34 to take on a wide range of possible values. This phenomenon along
with its potential application to finding the hypervolume of possible 4 × 4 correlation
matrices in 6-space will be explored in future research. Another direction will include
the generalization of the algorithm to n × n correlation matrices where n is greater
than 4. Such a generalization is not trivial as the complexity of the bounds seems to
grow exponentially with the size of the matrix. Most likely, the above algorithm will
require a significant simplification before it can be extended to correlation matrices of
arbitrary size. We save such an analysis for future study.
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