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Abstract

Let Ωn denote the set of all nxn doubly stochastic matrices. A matrix B ∈ Ωn

is said to be a star matrix if per(αB + (1 − α)A) ≤ α perB + (1 − α)perA, for
all A ∈ Ωn and for all α ∈ [0, 1]. In this paper we derive a necessary condition for
a star matrix to be in Ωn, and a partial proof of the star conjecture: The direct
sum of two star matrices is a star matrix.

1 Introduction

Let Ωn denote the set of all n by n doubly stochastic matrices. An interesting problem
in the study of permanents is whether the permanent function is convex on Ωn? That
is, to see the validity of the inequality

per(αB + (1 − α)A) ≤ αperB + (1 − α)perA, (1)

for all A, B ∈ Ωn and for all α ∈ [0, 1]. Though the result is true for n = 2, it is
not true for n ≥ 3. It was established by a counterexample given by Marcus and
quoted by Perfect [5]. In view of the falsity of the convexity of the permanent function
restricting B to some particular matrices in Ωn, the validity of (1) for all A ∈ Ωn and
for all α ∈ [0, 1] was investigated by many authors. The first result on the convexity
of permanent function obtained by Perfect [5], showed that per

(
In+A

2

)
≤ 1

2 + 1
2perA.

Brualdi and Newman [1] improved this result by showing that per(αIn + (1 − α)A) ≤
α + (1 − α)perA, for all A ∈ Ωn and for all α ∈ [0, 1]. Also they found that (1) is not
valid for B = J3 by considering A = (3J3− I3)/2, but (1) holds for all α ∈ [1

2
, 1], where

Jn is a doubly stochastic matrix whose entries are 1
n
. Wang [6] called a matrix B in

Ωn a star, if B satisfies

per(αB + (1 − α)A) ≤ αperB + (1 − α)perA, (2)

for all A ∈ Ωn and for all α ∈ [0, 1]. A necessary condition for B ∈ Ωn to be a star,
perB ≥ 1/2n−1, is also found by Wang [6]. Brualdi and Newman[1] have derived a
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necessary and sufficient condition for B ∈ Ωn to be a star, which states that, B ∈ Ωn

is a star if and only if

n∑

i,j=1

bijperAij ≤ perB + (n − 1)perA (3)

where Aij is an (n− 1)× (n− 1) matrix obtained by deleting the i-th row and the j-th
column of A. As α ∈ [0, 1], inequality (3) is also written as,

n∑

i,j=1

aijperBij ≤ perA + (n − 1)perB (4)

It is easy to show that every matrix in Ω2 is a star. For all n, In and Pn are stars,
where Pn is the full cycle permutation matrix.

Karuppanchetty and Maria Arulraj [3] have disproved Wang’s conjecture [6], which
states that, for n ≥ 3, permutation matrices are the only stars, by proving

B =
(

x 1 − x
1 − x x

)
⊕1 ∈ Ω3, 0 ≤ x ≤ 1, (5)

to be a star. They proved that this is the only star in Ω3 up to permutations of rows
and columns. They also established that the following are equivalent: (i) B is a star in
Ωn, (ii) BT is a star and (iii) PBQ is a star for any two permutation matrices P and
Q.

For brevity, let us use the notation M (a, b; c, d) to denote the 3×3 doubly stochastic
matrix 


a b 1 − a − b
c d 1 − c − d
1 − a − c 1 − b − d a + b + c + d − 1




and

E1 =




0 ε −ε
−ε 0 ε
ε −ε 0


 , ε > 0.

The matrix B = 1 ⊕ M (a, b; c, d) ∈ Ω4 where 0 < a, b < 1 and a + b 6= 1, is not a
star, since the only star in Ω3 is M (a, 1 − a; 1 − a, a) up to permutation of rows and
columns.

For integers r and n, (1 ≤ r ≤ n), let Qr,n denote the set of all sequences
(i1, i2, ..., ir) such that 1 ≤ i1 < . . . < ir ≤ n. For fixed α, β ∈ Qr,n, let A(α/β)
be a submatrix of A obtained by deleting the rows α and the columns β of A, let
A[α/β] denote the submatrix of A formed by the rows α and the columns β of A and
T (A[α/β]) denotes the sum of all the elements of the matrix A[α/β]. Let Ai denote
the first n-3 columns of the ith row of A and Aj denote the first n-3 rows of the jth

column of A. We denote A + E as Ã, a perturbation matrix of A ∈ Ωn.
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In this paper, we frequently use the following results (Minc [4]): If A = (aij) and
B = (bij) are n × n matrices, then

perA =
∑

β∈Qr,n

perA[α/β]perA(α/β), for α ∈ Qr,n (6)

∑

α,β∈Qr,n

perA[α/β]perA(α/β) =
(

n
r

)
perA, (7)

and

per(A + B) =
n∑

r=0

Sr(A, B), where Sr(A, B) =
∑

α,β∈Qr,n

perA[α/β]perB(α/β) (8)

perA[α/β] = 1 when r = 0 and per A(α/β) = 1 when r = n.

2 Properties of Star Matrices

From the definition of star matrices, it is easy to verify that the average of two stars
in Ω2 is also a star in Ω2. This is not so in Ωn, for n ≥ 3. For example, let C =
M
(
1, 0; 0, 1

2

)
and D = M

(
1
2 , 1

2 ; 1
2 , 1

2

)
be in Ω3. Here C and D are stars, but B =

1
2 (C + D) = M

(
3
4 , 1

4 ; 1
4 , 1

2

)
is not a star, since the matrix B defined by (5) is the only

star in Ω3 up to permutations of rows and columns. Hence the convex combination
of two stars need not be a star in Ωn, n ≥ 3. The above example leads us to find a
condition for the average of two stars to be a star in Ωn.

THEOREM 1. Let C and D be stars in Ωn. If perC+perD ≤ 2 per B, then
B = 1

2(C + D) ∈ Ωn is a star.

Indeed, let A ∈ Ωn. Then

n∑

i,j=1

bijperAij − perB − (n − 1)perA

=
1
2





n∑

i,j=1

cijperAij +
n∑

i,j=1

dijperAij



− perB − (n − 1)perA

≤ 1
2
{perC + (n − 1)perA + perD + (n − 1)perA} − perB − (n − 1)perA

≤ 1
2
{perC + perD} − perB

≤ 0.

LEMMA 1. Let B ∈ Ωn. If there exists an n × n matrix E 6= 0, such that the
perturbation matrix B̃ = B + E ∈ Ωn and

∑n−2
k=0(n − (k + 1))Sk(B, E) < 0, then B is

not a star.
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Indeed, it is easy to show that,

n∑

i,j=1

bijSk(Bij,Eij) = (k + 1)Sk+1(B, E), 0 ≤ k ≤ n − 2,

and
n∑

i,j=1

bijSn−1(Bij , Eij) =
n∑

i,j=1

bijperBij .

Let A = B̃. Then

n∑

i,j=1

bijperB̃ij − perB − (n − 1)perB̃

=
n∑

i,j=1

bij

n−1∑

k=0

Sk(Bij , Eij) − perB − (n − 1)perB̃

=
n−1∑

k=1

kSk(B, E) +
n∑

i,j=1

bijperBij − perB − (n − 1)perB̃

=
n−1∑

k=0

kSk(B, E) + nperB − perB − (n − 1)
n∑

k=0

Sk(B, E)

=
n−1∑

k=0

kSk(B, E) − (n − 1)
n−1∑

k=0

Sk(B, E)

= −
n−2∑

k=0

(n − (k + 1))Sk(B, E)

> 0.

Let B = (bij) ∈ Ωn, permute B such that bn−2,n, bn−1,n−2 and bn,n−1 are positive.
Using Lemma 1, we have a necessary condition for the matrix B to be a star.

THEOREM 2. Let B = (bij) be in Ωn such that bn−2,n, bn−1,n−2 and bn,n−1 are
positive. If B is a star, then



n∑

i,j=n−2

bij − 2
n∑

i,j=n−2

bii


 perX +

n−3∑

i,j=1




n∑

k,r=n−2

bribjk − 2
n∑

k=n−2

bkibjk


 perX(j/i)

(9)
is nonnegative, where X = (bij)(n−3)×(n−3) is a submatrix of B formed by taking the
first n − 3 rows and n − 3 columns of B.

PROOF: Let E = 0(n−3)×(n−3)⊕E1,0(n−3)×(n−3) is the zero matrix of order n−3,
such that the perturbation matrix B̃ = B + E is in Ωn. Let us suppose that B is
a star, then by Lemma 1,

∑n−2
k=0(n − (k + 1))Sk(B, E) ≥ 0. It is easy to show that,
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Sk(B, E) = 0, for k = 0, ..., n− 3. Now,

Sn−2(B, E) = ε2




n∑

i,j=n−2,i 6=j

per
(

X Bj

Bi bij

)
−

n∑

i=n−2

per
(

X Bi

Bi bii

)
 .

Take the permanent through the last row, we get

Sn−2(B, E) = ε2




n∑

i,j=n−2,i 6=j

bij −
n∑

i=n−2

bii




+ε2
n−3∑

i=1

n∑

j=n−2




n∑

r=n−2,j 6=r

briper(X(i)Bj ) − bjiper(X(i)Bj )




where (X(i)Bj ) is a submatrix of order n− 3 formed by deleting the i-th column of X
and includes the column Bj . Now, taking permanent of (X(i)Bj ) through the column
Bj we get

Sn−2(B, E) = ε2




n∑

i,j=n−2

bij − 2
n∑

i=n−2

bii


 perX

+ε2
n−3∑

i,j=1

(
n∑

k,r=n−2

bribjk − 2
n∑

k=n−2

bkibjk)perX(j/i).

Hence the necessary and sufficient condition for B ∈ Ωn to be a star is that (9) is
nonnegative.

Permute the identity matrix In such that the values in the positions (n − 2, n),
(n − 1, n − 2) and (n, n − 1) are one. Hence it is easy to very that In satisfies the
condition of the Theorem 2.

COROLLARY 1. Let B = (bij) be in Ω4 such that b24, b32 and b43 are positive. If
B is a star, then

bkk




4∑

i=1,i 6=k

bii − bkk


 +

4∑

j=1,j 6=k

bkjbjk ≤ 1
2
, k = 1, 2, 3, 4.

PROOF. Without loss of generality, we prove this corollary for k = 1. Let E =
0 ⊕ E1, ε > 0, such that the perturbation matrix B̃ = B + E ∈ Ω4. Let X = (b11).
From (8), perX(1/1) = 1. Suppose B is a star, then the Theorem 2 becomes,




n∑

i,j=n−2

bij − 2
n∑

i=n−2

bii


 perX +

n−3∑

i,j=1




n∑

k,r=n−2

bribjk − 2
n∑

k=n−2

bkibjk


 perX(j/i)

= b11(3 − (b21 + b31 + b41) − 2(b22 + b33 + b44)) + b12(1 − b11)
+b13(1 − b11) + b14(1 − b11) − 2(b12b21 + b13b31 + b14b41)

≥ 0.
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That is,

(−2b11(b22 + b33 + b44 − b11) + 1 − 2(b12b21 + b13b31 + b14b41)) ≥ 0.

This implies that,

b11(b22 + b33 + b44 − b11) + (b12b21 + b13b31 + b14b41) ≤
1
2
.

The condition (9) in the Theorem 2 is only necessary but not sufficient. For example,
Jn satisfies the condition (9) in the Theorem 2, but Jn is not a star.

3 Direct Sum of Star Matrices

It follows from the definition of star matrix that, for n = 2, every doubly stochastic
matrix is a star. In general, since the permanent is invariant under permuting rows
and columns and from the theorem of Brualdi and Newman [1] it follows that, all
permutation matrices are stars. Wang [6] believed that for all n ≥ 3, the only stars
are permutation matrices and hence proposed a conjecture and quoted by Cheon and
Wanless [2], which states that, “for n ≥ 3, B ∈ Ωn is a star if and only if B is a
permutation matrix”. Karuppanchetty and Maria Arulraj [3] have disproved Wang’s
conjecture, by proving the matrix B defined by (5) is a star. For disproving the
conjecture in more general case, Karuppanchetty and Maria Arulraj [3] (also see Cheon
and Wanless [2]) observed that, the stars in Ωn are only direct sum of 2 × 2 doubly
stochastic matrices and identity matrices. In this regard they proposed the following
conjectures:

i. The direct sum of two stars is also a star.
ii. The only stars in Ωn are the direct sum of 2× 2 doubly stochastic matrices and

identity matrices up to permutations of rows and columns.
In our endeavor to prove the first conjecture, we establish the conjecture only par-

tially in the sense that the condition for star is satisfied for all A in Ωn, by permuting
A with specified conditions.

For example,

B =
(

x 1 − x
1 − x x

)
⊕
(

y 1 − y
1 − y y

)
∈ Ω4, 0 ≤ x, y ≤ 1, (10)

satisfies the star condition for the matrix A = (aij) ∈ Ω4 such that a11+a12+a21+a22 ≤
1. This result is established in Theorem 3. The matrix

B = In ⊕
(

x 1 − x
1 − x x

)
∈ Ωn, 4 ≤ n, 0 ≤ x ≤ 1,

satisfies the star condition for all A = (aij) ∈ Ωn such that a11 and a22 ≤ 1
n . This

result is proved in Theorem 4.
THEOREM 3. The direct sum of two 2× 2 doubly stochastic matrices satisfies the

star condition for the matrices A = (aij) ∈ Ω4 such that a11 + a12 + a21 + a22 ≤ 1.
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PROOF. Let B be the matrix defined by (10). Without loss of generality let
us assume that both x and y are at least 1

2 . Let A = (aij) be in Ω4 such that
T (A[(1, 2)/(1, 2)]) ≤ 1. Now,

4∑

i,j=1

aijperBij − perA − 3perB

= (a11 + a22)x(2y2 − 2y + 1) + (a12 + a21)(1 − x)(2y2 − 2y + 1)
+(a33 + a44)y(2x2 − 2x + 1) + (a34 + a43)(1 − y)(2x2 − 2x + 1)
−perA − 3(2x2 − 2x + 1)(2y2 − 2y + 1)

≤ T (A[(1, 2)/(1, 2)])x(2y2 − 2y + 1) + T (A((1, 2)/(1, 2)))y(2x2 − 2x + 1)
−perA − 3(2x2 − 2x + 1)(2y2 − 2y + 1)

≤ x(2y2 − 2y + 1) + y(2x2 − 2x + 1) − perA − 3(2x2 − 2x + 1)(2y2 − 2y + 1)

≤ (2y2 − 2y + 1)
(

x − 3
2
(2x2 − 2x + 1)

)

+(2x2 − 2x + 1)
(

y − 3
2
(2y2 − 2y + 1)

)
− perA

≤ 0,

where the second inequality follows from T (A[(1, 2)/(1, 2)]) = T (A((1, 2)/(1, 2))) ≤ 1,
while the third from x − 3

2 (2x2 − 2x + 1) ≤ 0,and y − 3
2(2y2 − 2y + 1) ≤ 0.

THEOREM 4. The matrix

B = In−2 ⊕
(

x 1 − x
1 − x x

)
∈ Ωn, n ≥ 4, 0 ≤ x ≤ 1,

satisfies the star condition for all A = (aij) ∈ Ωn such that a11 and a22 ≤ 1
n .

PROOF. Let A = (aij) be in Ωn such that a11 and a22 ≤ 1
n
. Without loss of

generality let us assume that x is at least 1
2 . Now,

n∑

i,j=1

aijperBij − perA − (n − 1)perB

=

(
n−2∑

i=1

aii

)
(2x2 − 2x + 1) + (an−1,n−1 − ann)x + (an−1,n + an,n−1)(1 − x) − perA

−(n − 1)(2x2 − 2x + 1)

≤ (2x2 − 2x + 1)
(

2
n

+ n − 4 − (n − 1)) + 2x − perA
)

≤ −5
2
(2x2 − 2x + 1) + 2x − perA

≤ 0,

where the first inequality follows from T (A[(n − 1, n)/(n − 1, n)]) ≤ 2, while the third
from 2x − 5

2 (2x2 − 2x + 1) ≤ 0.
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4 Conclusion

If A and B are in Ωn, then AB and BA are also in Ωn. Hence there is an open question,
whether the product of two stars is a star? The answer is yes for n = 2, since any 2x2
doubly stochastic matrix is a star. In the case of n = 3, if A = M (1

2 , 0; 0, 1) and B =
M (1

2
, 1

2
; 1

2
, 1

2
), then AB = M (1

4
, 1

4
; 1

2
, 1

2
) is not a star. But if A = M (x, 1 − x; 1− x, x)

and B = M (y, 1 − y; 1 − y, y), 0 < x, y < 1, then AB = M (z, 1− z; 1 − z, z) is a star,
where z = xy + (1 − x)(1 − y). For n ≥ 4, there is no definite answer. But for some
particular cases this result is true. For example, if B is a star in Ωn, then PB and BP
are also stars in Ωn, where P is a permutation matrix.

We feel that the conjecture (i) “the direct sum of two stars is also a star”, cannot be
proved in general cases, since for any arbitrary matrices A1 ∈ Ωn1 and A2 ∈ Ωn2 , where
n = n1 + n2, cannot be expressed in terms of an arbitrary matrix A in Ωn. However,
for particular cases we can prove this conjecture. In this connection the theorems 3
and 4 give a partial proof for the conjecture (i). To prove the conjecture (ii), there
are two possible lines of attack. One could take a positive matrix and prove that it is
not a star and the other way is, any doubly stochastic matrix with an odd number of
zeros is not a star. In this regard, we conclude this paper by proposing the following
conjectures.

Conjecture (1): Any positive matrix in Ωn, n ≥ 4, is not a star.
Conjecture (2): If B is a star in Ωn, n ≥ 4, then B is a symmetric matrix up to

permutations of rows and columns.
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