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Abstract

Some examples are given to illustarte that the characterization in [8] for the
convergence of Picard iteration to a fixed point for a continuous mapping, is false.

Throughout this paper, let T be a mapping from a nonempty subset D of a metric
space X into X and let F (T ) be a fixed point set of T . A mapping T : D → X
is called nonexpansive if for each x, y ∈ D, d(T (x), T (y)) ≤ d(x, y). T is said to be
quasi-nonexpansive if for each x ∈ D and for every p ∈ F (T ), d(T (x), p) ≤ d(x, p). T
is conditionally quasi-nonexpansive if it is quasi-nonexpansive whenever F (T ) 6= ∅.

Since convergence theorems of iterations to a fixed point for nonexpansive mapping
are discussed in [1-2], many results on the convergence of some iterations to fixed points
for nonexpansive, quasi-nonexpansive and generalized types of quasi-nonexpansive map-
pings in metric and Banach spaces have appeared (for example, [3-8]).

Following Ghosh and Debnath [4], if D is a convex subset of a normed space X and
T : D → D, Ishikawa introduced the following iteration

x0 ∈ D, xn = T n
λ,µ(x0), Tλ,µ = (1 − λ)I + λT [(1 − µ)I + µT ],

for each n ∈ N (the set of all positive integers), where λ ∈ (0, 1) and µ ∈ [0, 1). When
µ = 0, it yields that Tλ,µ = Tλ and the iteration becomes

x0 ∈ D, xn = T n
λ (x0), Tλ = (1 − λ)I + λT.

This iteration is called Mann iteration. If Tµ = (1− µ)I + µT , Tλ,µ may be written in
the form

Tλ,µ = (1 − λ)I + λTTµ.

Recall a mapping T is asymptotically regular at x0 ∈ D if

lim
n→∞

d(T n(x0), T n+1(x0)) = 0.
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T is said to be asymptotically regular on D if T is asymptotically regular at every point
in D.

In 1973, Petryshyn and Williamson [3] proved the following theorem.
THEOREM 1. Let D be a closed subset of a Banach space X. Let T be a condition-

ally quasi-nonexpansive mapping of D into X. Suppose that the sequence {T n(x0)} is
contained in D, for some x0 ∈ D. Then {T n(x0)} converges to a fixed point of T in D
if and only if

(i) T is asymptotically regular at x0, and

(ii) there exists a compact set K such that limn→∞ d(T n(x0), K) = 0.

Recently, Ahmed [8] generalized and improved Theorem 1 and proved the following
result.

THEOREM 2. (See [8, Theorem 2.1]) Let T be a continuous mapping from a
subset D of a metric space X into X. Then the sequence {T n(x0)}, for some x0 ∈ D,
converges to a unique fixed point of T if and only if T is asymptotically regular at x0

and limn→∞ T n(x0) exists.
REMARK 3. (See [8, Remark 2.1]) Theorem 2 improves Theorem 1:

(1) the closedness of D is superfluous;

(2) T needs not to be conditionally quasi-nonexpansive; and

(3) {T n(x0)} needs not to be contained in D.

However, we note Theorem 2 requires the existence of limn→∞ T n(x0). In order to
prove the existence of limn→∞ T n(x0), the author gave the following proposition.

PROPOSITION 4. (See [8, Proposition 2.1]) Let T be a mapping from a subset D
of a complete metric space X into X. If there exists a nonempty subset K of X such
that limn→∞ d(T n(x0), K) = 0, then limn→∞ T n(x0) exists.

Using the above proposition, the author obtained the following remark.
REMARK 5. (See [8, Remark 2.1]) If condition (ii) of Theorem 2 holds and X is

complete, then we have from Proposition that limn→∞ T n(x0) exists.
It is our purpose in this note to show that Proposition 4 and Remark 5 are false.

It is clear from the proof of Proposition 4 that for all l, k ≥ n0,

d(T l(x0), T k(x0)) ≤ d(T l(x0), y0) + d(T k(x0), y0), whenever y0 ∈ K.

However, if we take the infimum over y0 ∈ K, we do not get that

d(T l(x0), T k(x0)) ≤ d(T l(x0), K) + d(T k(x0), K).

Indeed, we take a nonempty subset K of X such that {T n(x0), n ∈ N} ⊂ K and let
l 6= k, then

0 < d(T l(x0), T k(x0)) ≤ d(T l(x0), K) + d(T k(x0), K) = 0,
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and this is a contradiction.
We may take the following example which is contradictory with Proposition 4.
EXAMPLE 6. Let X = K = R, D = [1, 3], be endowed with the Euclidean metric

d. We define the mapping T : D → X by Tx = 2x2 for each x ∈ D. For a given
x0 = 2 ∈ D, we have that limn→∞ d(T n(x0), K) = 0, but limn→∞ T n(x0) = ∞.

REMARK 7. As for a mapping T from a subset D of a complete metric space X
into X with F (T ) 6= ∅, even if we assume T satisfies limn→∞ d(T n(x0), F (T )) = 0, we
can not pledge that limn→∞ T n(x0) exists.

EXAMPLE 8. Let X = K = [0, 1], be endowed with the Euclidean metric d. We
define the mapping T : K → K by T (0) = 0, T (1) = 1 and

Tx =





1 − x, x ∈ [12 , 1), 1 − x
10 , x ∈ (0, 1

2),

1 − x
10

, x ∈ (0, 1
2
),

then we know that F (T ) = {0, 1
2 , 1}. Take x0 = 0.1, then we have {T n(x0), n ≥ 0} =

{0.1, 0.99,0.01, 0.999, 0.001, 0.9999, · · · , } which implies that limn→∞ d(T n(x0), F (T ))
= 0, but limn→∞ T n(x0) does not exist.
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