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Abstract

With a new method based on the notion of genetic algorithm and the explicit
enumeration of orders, we prove that all orders on at most 10 elements are circle
orders. This theorem represents the best partial result on Sidney-Sidney-Urrutia
Conjecture.

1 Order Dimension and Circle Orders

We are interested in orders of small size which are circle orders, in relation to their
dimension (see [6]). As is well known, the finite posets of dimension at most two
are just those which have inclusion representations using closed intervals of the real
line R. Because a closed interval of R can also be considered as a sphere in R1, it
is natural to ask which posets have inclusion representations using circular disks in
R2. For historical reasons, these posets are called circle orders. Schneinerman and
Wierman [11] showed in that Z3 is not a circle order, and then Hulbert [10] showed
that the same holds for N3. Urrutia, after having proved that all finite orders with
dimension at most three are regular n-gon orders for all n ≥ 3, conjectured that all
finite orders with dimension at most three are circle orders (see [13]). However, in 1999,
Felsner, Fishburn and Trotter [5] disproved this conjecture by using a new argument
from Ramsey theory. They think it would be possible to find an order which is not
a circle order with dimension three and at most one hundred elements. The crossing
number of an order is the smallest integer m such that the order can be represented
by continuous real-valued functions in [0, 1], no two of whose graphs intersect in more
than m points. With this notion, Sidney, Sidney and Urrutia [12] showed the following
result.

THEOREM 1 [Sidney, Sidney and Urrutia, 1988]. For n ≥ 4, Ψn is not a circle
order.

To construct the family Ψn, start with the standard n-dimension order denoted by
Hn(Y, <), where Y = {u1, . . . , un, v1, . . . , vn}, and ui < vj for i 6= j, the other elements
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being incomparable. Then for every subset Sk of {1, . . . , n} with exactly bn
2 c or bn+1

2 c
elements (if n is even, both values are the same, if n is odd they are different), insert
in Hn(Y, <) a new element sk such that sk > uj for j ∈ Sk, sk < vi for i /∈ Sk and
finally, sk > s′k if S′

k ⊂ Sk.
To show that the dimension of Ψn is exactly n, it is sufficient to observe that Ψn is

contained in 2n and contains Hn.
Furthermore in 1989, thanks to Radon lemma, Brightwell and Winkler [1] obtained

the following theorem.

THEOREM 2 [Brightwell and Winkler, 1989]. For each n ≥ 1, the order with
2n+2 − 2 elements P2n+2−2 is a n-sphere order, but not a (n − 1)-sphere order, where

P(2n+2−2) = {A ⊆ {1, 2, . . . , n + 2} : 1 ≤ |A| ≤ n + 1}

with A ≤ B if and only if A ⊆ B and (|A| = 1 or |B| = n + 1).

Among those two families of orders which are not circle orders, there is an order
with 14 elements belonging to both families: P2 = Ψ4, we call it p14.

CONJECTURE 1 [Sidney, Sidney and Urrutia, 1988]. The smallest order which is
not a circle order is p14.

In 1991, Fräıssé and Lygeros [7] showed that all orders with at most 7 elements
are circle orders, introducing a method based upon an exhaustive order computation
and their automatic discrimination with the application of the theorem of Dushnik and
Miller [4], and Hiraguchi [9]. However, the last part of the proof which is a fastidious
case by case verification, cannot be applied to larger orders. So, it is necessary to
introduce a new method.

2 Enumeration and Genetic Algorithm

We consider the list of non-isomorphic orders with n elements, obtained by the gener-
ation algorithm of Chaunier and Lygeros (see [2, 3]). Every order is represented in a
canonical way by a list of n(n−1)

2 bits. If P = (X, <) is a poset then for (x, y) ∈ X2

we write x ‖ y if and only if x and y are incomparable for <. A conjugate of a poset
P = (X, <) is a poset P ′ = (X,≺) such that ∀(x, y) ∈ X2, x ‖ y if and only if
(x ≺ y or y ≺ x). As every order with dimension at most two is clearly a circle order,
we use the following theorem to detect them (see [4]).

THEOREM 3 [Dushnik and Miller, 1941]. A poset has dimension at most two if
and only if it has a conjugate order.

Thus, to know whether or not the dimension of a poset P is at most two, we only
need to know whether or not the graph G = (X, {(x, y) ∈ X2, x ‖ y}) — called the
incomparability graph of the poset P — admits a transitive orientation, which can be
done in linear time (see, for instance, [8]).

We obtain the following proportions.
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n Proportion of 2-dimensional orders among orders with n elements
7 95.65% that is 1956/2045
8 87.03% that is 14794/16999
9 71.78% that is 131526/183231
10 51.88% that is 1331848/2567284

We explicit now some basic properties of a minimal counter-example P (X, <) to
the conjecture, regarding the number of elements. Let n be the number of elements of
P — therefore, all orders with n − 1 elements are circle orders. A sink is an element
x ∈ X such that ∀y ∈ X \ {x}, y < x. It is clear that P cannot have a sink. A source
is an element x ∈ X such that ∀y ∈ X \ {x}, x < y. Then, P has no source. This is
by virtue of the existence of Sidney-Sidney-Urrutia’s normal representation: be it by
increasing the circles radius, every circle order admits a part of the plane that is shared
by all the circles. Besides, we also know that P does not have two twin elements, where
(x, y) ∈ X2 are twin elements if and only if

• x < y;

• ∀z 6= y, x < z ⇒ y < z; and

• ∀z 6= x, z < y ⇒ z < x.

There is a natural notion of duality for posets: let (X, <) be a poset, the binary
relation ≺ defined on X by

∀(x, y) ∈ X2, x ≺ y if and only if y < x

is a partial order. The poset (X,≺) is called the dual of the poset (X, <). As is well
known (see [13]), the dual of a finite circle order is also a circle order.

Let n ∈ {8, 9, 10}, and consider the enumeration of all non-isomorphic partial orders
with n elements. We remove from the list every order that has a sink, a source or two
twin elements. Moreover, we remove an order in each couple of dual orders. It remains
783 orders with 8 elements, 16537 orders with 9 elements and 397603 orders with 10
elements, on which we run the representation search algorithm.

This program comes from genetic algorithms. To find a representation of a given
order P with n elements, we start by randomly generating a population of subjects:
a subject is a set of n circles, fulfilling some inclusion constraints. Every subject is
created in a random way, the circles representing elements of big degree being more
likely to have smaller radii. Then, we define the fitness of every subject: the bigger
it is, the more the subject is close to a representation of P . A subject whose fitness
reaches the maximum value is a solution. To compute the fitness of a subject, we apply
a bonus of value n + 1 for each relation present in the subject that also is present in
P . In the same way, a bonus of one is given for any two incomparable elements of
the subject that also are incomparable in P . On the contrary, if a relation is missing
in the subject, then a penalty of value 2n is applied. For the relations present in the
subject but not in the original poset, we distinguish two cases: consider the height of
the elements in the Hasse diagram of P , where minima of P have height zero while
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maxima have maximum height. Let x < y be a relation present in the subject but not
in P . If the height of x is less than the height of y, then the value of the penalty applied
is n. But if the height of x is at least the height of y then the value of the penalty
applied is 2n. Note that this test is elementary thanks to the canonical representation
of the poset P given by the enumeration algorithm. Thus the fitness of any subject is
at most n(n−1)

2 +n×(number of relations of P ), with equality if and only if the subject
is a representation of P .

The following three steps form a so-called generation. A maximum number of
generations is fixed at the beginning. If the algorithm has not found a representation
after this number of generations, it stops.

1. Each subject, except the best two, undergoes local disturbances so as to improve
its fitness;

2. the fitness of each subject is re-evaluated; and

3. worst subjects are replaced by new ones without any crossing process.

We have implemented two kinds of local disturbances: the algorithm can remove
an inclusion between two circles, or force an inclusion.
To remove the inclusion of C1 in C2, we move the circle that scores less points in the
fitness evaluation process of the subject. The centre is translated in a random direction,
with the minimum ratio that cancels the inclusion.
To force the inclusion of C1 in C2, again only the circle that scores less points in
the fitness evaluation process of the subject is changed, say C1. The forcing aims at
minimising the changes of position. The radius of C1 becomes r × (radius of C2) where
r is randomly chosen between 1

2 and 3
4 . Then the centre of C1 is translated in the

direction defined by the two centres, with a ratio that minimises the movement and
achieves the inclusion.

Between two generations, some subjects of the population might undergo some
mutations. The subjects are chosen randomly, and a mutation consists of forcing some
needed inclusion not achieved by the subject.

All the solutions returned by the representation search algorithm were validated by
a formal certificate. This certificate computes and compares only integers, using the
GMP multiprecision library.

With this new method, we extended the previous result on orders with at most 7
elements to orders with up to 10 elements. We thus obtained the following theorem.

THEOREM 4. All orders with at most 10 elements are circle orders.

We underline here the importance of the local aspect of the disturbances applied
to the subjects. For instance, when moving a circle C so as to force or to remove an
inclusion, if we move accordingly all the circles that C contains, or that are contained
by C, then the algorithm is much less powerful.

As the Urrutia conjecture on 3-dimensional orders has been disproved by the result
of [5], it does not exist for the moment a global method able to directly prove Sidney-
Sidney-Urrutia conjecture. Thus our method, even if it is exhaustive, remains the only
one which can theoretically prove it. Furthermore, the representation search algorithm
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has always found a representation until now. A failure of the algorithm could exhibit
a potentially good candidate to disprove the conjecture. Hence our method can also
help in finding a counter-example, and by the way increase our understanding of circle
orders.

3 Numerical Tables

These tables show the number of orders that remain after the discrimination process.

Orders with 8 elements

relations orders relations orders
7 3 14 123
8 13 15 96
9 28 16 78
10 59 17 38
11 82 18 21
12 115 19 4
13 121 20 2

Orders with 9 elements

relations orders relations orders
8 11 19 1735
9 43 20 1381
10 136 21 959
11 303 22 612
12 593 23 334
13 932 24 153
14 1374 25 62
15 1721 26 22
16 2022 27 4
17 2111 28 2
18 2027

Orders with 10 elements
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relations orders relations orders
9 37 23 35719
10 166 24 30697
11 554 25 24492
12 1483 26 18349
13 3231 27 12678
14 6157 28 8212
15 10351 29 4811
16 15795 30 2642
17 22047 31 1257
18 28517 32 571
19 34189 33 214
20 38273 34 76
21 39947 35 23
22 39111 36 7
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